多元正态分布-参数估计-书后习题回顾总结

本文探讨了多元正态分布的基本理论及其线性变换特性,重点介绍了协方差矩阵的性质,包括其对称性及对角线元素含义,并讨论了随机向量独立性的充分必要条件。此外,还讲解了正交矩阵的性质及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重点考察知识点汇总

  1. 协方差矩阵
    在这里插入图片描述
  • 协方差矩阵为对称矩阵
  • 协方差矩阵的对角线为各分量的方差,其余位置 ( i , j ) (i,j) (i,j)表示的是分量 i i i和分量 j j j的协方差
  1. 多元正态分布的线性组合仍然服从多元正态分布
    X ∼ N p ( μ , Σ ) X\sim N_{p}(\mu,Σ) XNp(μ,Σ) B B B s × p s\times p s×p常数矩阵, d d d s s s维常向量,令 Z = B X + d Z=BX+d Z=BX+d,则 Z ∼ N s ( B μ + d , B Σ B T ) Z\sim N_{s}(B\mu+d,BΣB^{T}) ZNs(Bμ+d,BΣBT)

  2. 多元条件正态分布
    在这里插入图片描述
    学会分块

  3. 两个随机向量相互独立的充分必要条件
    协方差为0

  4. 协方差的性质
    在这里插入图片描述

  5. 正交矩阵的性质:该矩阵的转置 等于 该矩阵的逆矩阵

  6. 转置的性质:
    在这里插入图片描述

  7. 多元正态分布 μ μ μ, Σ Σ Σ的最大似然估计公式
    在这里插入图片描述
    在这里插入图片描述

  8. 常用矩阵微分
    在这里插入图片描述

  9. 极大似然估计函数 取对数后 再分别对 μ μ μ Σ Σ Σ求微分的结论
    在这里插入图片描述


2-1

题目

在这里插入图片描述

理论基础

X ∼ N p ( μ , Σ ) X\sim N_{p}(\mu,Σ) XNp(μ,Σ) B B B s × p s\times p s×p常数矩阵, d d d s s s维常向量,令 Z = B X + d Z=BX+d Z=BX+d,则 Z ∼ N s ( B μ + d , B Σ B T ) Z\sim N_{s}(B\mu+d,BΣB^{T}) ZNs(Bμ+d,BΣBT)

具体解题

在这里插入图片描述


2-4

题目

在这里插入图片描述

理论基础

在这里插入图片描述
协方差矩阵的性质:
在这里插入图片描述

  • 协方差矩阵为对称矩阵
  • 协方差矩阵的对角线为各分量的方差
具体解题

在这里插入图片描述


2-6

题目

在这里插入图片描述

理论基础
  1. X ∼ N p ( μ , Σ ) X\sim N_{p}(\mu,Σ) XNp(μ,Σ) B B B s × p s\times p s×p常数矩阵, d d d s s s维常向量,令 Z = B X + d Z=BX+d Z=BX+d,则 Z ∼ N s ( B μ + d , B Σ B T ) Z\sim N_{s}(B\mu+d,BΣB^{T}) ZNs(Bμ+d,BΣBT)
  2. 两个随机向量相互独立 ⟺ \Longleftrightarrow 他们的协方差(矩阵)为 0 0 0矩阵
  3. 协方差的性质
    在这里插入图片描述
具体解题

在这里插入图片描述


2-9

题目

在这里插入图片描述

理论基础
  1. 正交矩阵的性质:该矩阵的转置 等于 该矩阵的逆矩阵
  2. X ∼ N p ( μ , Σ ) X\sim N_{p}(\mu,Σ) XNp(μ,Σ) B B B s × p s\times p s×p常数矩阵, d d d s s s维常向量,令 Z = B X + d Z=BX+d Z=BX+d,则 Z ∼ N s ( B μ + d , B Σ B T ) Z\sim N_{s}(B\mu+d,BΣB^{T}) ZNs(Bμ+d,BΣBT)
  3. 转置的性质:
    在这里插入图片描述
  4. 两个随机向量相互独立 ⟺ \Longleftrightarrow 他们的协方差(矩阵)为 0 0 0矩阵
  5. 协方差矩阵的性质
    在这里插入图片描述
  • 协方差矩阵为对称矩阵
  • 协方差矩阵的对角线为各分量的方差
具体解题

第一小问略 算一下即可
第二小问:
证明一:
在这里插入图片描述
证明二:
在这里插入图片描述
证明三:
在这里插入图片描述


2-15

题目

在这里插入图片描述

理论基础
  1. 多元正态分布 μ μ μ, Σ Σ Σ的最大似然估计公式
    在这里插入图片描述
    在这里插入图片描述
  2. 常用矩阵微分
    在这里插入图片描述
  3. 极大似然估计函数 取对数后 再分别对 μ μ μ Σ Σ Σ求微分的结论
    在这里插入图片描述
具体解题

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值