题目链接: Luck and Love
大致题意
解题思路
区间线段树 套 区间线段树
首先提一下这个题注意的点, H1和H2 以及 A1和A2的大小是没有指定的, 需要判断. 其次题目数据中说L的范围是[0.0, 100.0], 但是实际上好像不存在等于0的情况. 因为我用0作为未找到的值时, 最后查询判断是否为0也可以AC.
原来二维线段树就是树套树啊
回归正题, 题目中要求在[h1, h2] 且 [a1, a2]的区间中找到最大值, 那么我们如果任意去掉一个条件, 发现就是个RMQ. 但是由于还多了一重条件, 所以做一个RMQ嵌套即可.
需要注意的点是, 我们在建立线段树时, 外层树管身高, 内层树管活泼是比较理想的, 因为身高的值域比较小, 而活泼度由于是一位数的浮点数, 我们考虑用其*10后的整数来表示.
考虑到空间复杂度, 外层树节点为 N = 100, 内层树需M = 1000 * N * logN, 当然最后不要忘了线段树的4倍空间.
考虑到时间复杂度, 单次修改和查询会访问到log*log棵线段树.
AC代码
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 105, M = 1005 * N * log2(N);
struct node {
//管活泼
int l, r;
double fmax;
}t[M << 2]; int ind;
void pushup(int x) {
t[x].fmax = max(t[t[x].l].fmax, t[t[x].r].fmax); }
void modify(int a, double val, int tl, int tr, int x) {
if (tl == tr) {
t[x].fmax = max(t[x].fmax, val);
return;
}
int mid = tl + tr >> 1;
if (<

本文解析了 LuckandLove 问题中如何利用区间线段树进行高效处理,通过嵌套线段树解决多维区间查询问题,重点讲解了构建、修改和查询操作的思路,以及空间与时间复杂度分析。
最低0.47元/天 解锁文章
2870

被折叠的 条评论
为什么被折叠?



