Luck and Love(树套树)

本文解析了 LuckandLove 问题中如何利用区间线段树进行高效处理,通过嵌套线段树解决多维区间查询问题,重点讲解了构建、修改和查询操作的思路,以及空间与时间复杂度分析。

题目链接: Luck and Love

大致题意

解题思路

区间线段树 套 区间线段树

首先提一下这个题注意的点, H1和H2 以及 A1和A2的大小是没有指定的, 需要判断. 其次题目数据中说L的范围是[0.0, 100.0], 但是实际上好像不存在等于0的情况. 因为我用0作为未找到的值时, 最后查询判断是否为0也可以AC.

原来二维线段树就是树套树啊

回归正题, 题目中要求在[h1, h2] 且 [a1, a2]的区间中找到最大值, 那么我们如果任意去掉一个条件, 发现就是个RMQ. 但是由于还多了一重条件, 所以做一个RMQ嵌套即可.

需要注意的点是, 我们在建立线段树时, 外层树管身高, 内层树管活泼是比较理想的, 因为身高的值域比较小, 而活泼度由于是一位数的浮点数, 我们考虑用其*10后的整数来表示.

考虑到空间复杂度, 外层树节点为 N = 100, 内层树需M = 1000 * N * logN, 当然最后不要忘了线段树的4倍空间.

考虑到时间复杂度, 单次修改和查询会访问到log*log棵线段树.

AC代码

#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 105, M = 1005 * N * log2(N); 
struct node {
   
    //管活泼
	int l, r;
	double fmax;
}t[M << 2]; int ind;
void pushup(int x) {
   
    t[x].fmax = max(t[t[x].l].fmax, t[t[x].r].fmax); }
void modify(int a, double val, int tl, int tr, int x) {
   
   
	if (tl == tr) {
   
   
		t[x].fmax = max(t[x].fmax, val);
		return;
	}
	int mid = tl + tr >> 1;
	if (<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逍遥Fau

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值