Codeforces1397D Stoned Game (博弈)

题目链接: Stoned Game

大致题意

n n n堆石子, 第 i i i堆有 a i a_i ai个.

A和B轮流取石子, A先取.
每次可以选择一个非空石子堆, 并从中拿走 1 1 1个石子.
限制: 当前玩家选择的石子堆不能和上一个玩家相同.

谁最终不能取石子了, 谁就输了.

问: 谁会获得胜利.

解题思路

博弈

首先考虑去除限制, 我们很容易得出结论: 当石子总数是奇数, 先手胜, 反之后手胜.


思路一:

我们现在加上限制, 考虑到一种特殊局势, 有一堆石子很多, 比其他所有堆加和还要多. 那么先手只需要一直选择这堆石子, 必胜.

否则, 任何人都不希望对方拿到这种特殊局势. 考虑到每次每个人都只能使得一堆石子减少1, 因此特殊局势不会在游戏过程中出现. 故答案同去除限制的情况.

解释: 为什么初始不是特殊局势, 后续也不会出现特殊局势?

每个人肯定都希望自己拿到特殊局势, 但最初的特殊局势的转化一定是: 最大堆有 x x x个, 此时其余堆总和也有 x x x个, 然后由对方从其他堆中拿走1个 形成的.

显然对方并不会给出特殊局势. 因此对方一定会拿最大堆的石子. 那么下一种特殊局势是: 最大堆有 x − 1 x - 1 x1个, 其他堆也有 x − 1 x - 1 x1个, 然后由对方从其他堆拿走1个 形成.

你会发现这个过程会反复进行, 一直持续到所有堆的石子都被拿完.


思路二:

我们考虑加上限制后, 什么情况下会受到限制的约束:

其实就是当两个人都要去拿同一堆石子的时候. 那什么情况下, 两个人需要去拿同一堆石子? 当且仅当只剩一堆石子时. 否则另外一个人可以拿其他堆石子, 来保证自己不输.

因此两个人都希望自己面对 仅剩一堆石子的的情况, 但这种情况我们同样发现需要对方给出, 但对方又不傻, 一定不会主动给出这个局面.

但是我们发现, 如果初始局面是 思路一 中的特殊局势, 那么先手只需要一直拿最大堆, 后手迫不得已会给出仅剩一堆石子的局面. 此时后手就败了. 反之, 答案同于没有约束的情况.


综上所述, 我们只需要判断初始局面是否为特殊局势.
若是, 则先手胜. 否则, 当石子总数是奇数时, 先手胜. 反之, 后手胜.

AC代码

#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
int main()
{
    int t; cin >> t;
    while (t--) {
    	int n; cin >> n;
    	int all = 0, fmax = 0;
    	rep(i, n) {
    		int x; scanf("%d", &x);
    		all += x; fmax = max(fmax, x);
    	}

    	if (fmax > all - fmax) puts("T");
    	else {
    		puts(all & 1 ? "T" : "HL");
    	}
    }
    
    return 0;
}

END

### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逍遥Fau

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值