原理
归并排序(MergeSort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序是稳定的排序算法。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法组合实现:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
算法步骤:
-
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
-
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
-
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
-
重复步骤 3 直到某一指针达到序列尾;
-
将另一序列剩下的所有元素直接复制到合并序列尾。
代码实现
public static void mergeSort(int[] array) {
mergeRangeSort(array, 0, array.length);
}
private static void mergeRangeSort(int[] array, int from, int to) {
int size = to - from;
if (size <= 1) {
return;
}
int mid = from + (to - from) / 2;
mergeRangeSort(array, from, mid);
mergeRangeSort(array, mid, to);
merge(array, from, mid, to);
}
private static void merge(int[] array, int from, int mid, int to) {
int size = to - from;
int[] newArray = new int[size];
int idx1 = from;
int idx2 = mid;
int index = 0;
while (idx1 < mid && idx2 < to) {
if (array[idx1] <= array[idx2]) {
newArray[index++] = array[idx1++];
} else {
newArray[index++] = array[idx2++];
}
}
if (idx1 < mid) {
while (idx1 < mid) {
newArray[index++] = array[idx1++];
}
} else {
while (idx2 < to) {
newArray[index++] = array[idx2++];
}
}
for (int i = 0; i < size; i++) {
array[from + i] = newArray[i];
}
}
代码分析
性能分析
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
时间复杂度:
因为快速排序一直在利用中间下标将区间递归分为左右两个小区间,图解像一个二叉树,所以二叉树的深度可以形象的比作快速排序要执行的次数。一直从中间下标递归分割固定的区间长度为完全二叉树时,深度最低时,时间复杂度最小为O(log(n))。再从开始到结束下标将其中的所有元素覆盖到旧组中时间复杂度为O(n),合起来就是O(nlog(n))。
空间复杂度:
归并排序归并过程需要创建新数组,新数组的长度和传入的数组长度一样,所以其需要占用n个额外空间。
归并排序和快速排序是唯二的空间复杂度不是O(1)的排序算法。
稳定性
归并排序是稳定的排序算法。