[算法]最大子列和问题

该博客探讨了如何解决最大子列和问题,分别介绍了分治法、分析法和动态规划法,并阐述了各自的时间复杂度。通过示例序列说明了问题,最后给出了动态规划法的解决方案,其时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

题目概述
给定 K K K个整数组成的序列{ N 1 , N 2 , … , N K N_1, N_2, …, N_K N1,N2,,NK},“连续子列”被定义为{ N i , N i + 1 , … , N j N_i,N_{i+1}, …, N_j Ni,Ni+1,,Nj},其中 1 ≤ i ≤ j ≤ K 1 ≤ i ≤ j ≤ K 1ijK。“最大子列和”被定义为所有连续子列元素的和中最大者。例如给定序列{ − 2 , 11 , − 4 , 13 , − 5 , − 2 -2, 11, -4, 13, -5, -2 2,11,4,13,5,2},其连续子列{ 11 11 11, − 4 -4 4, 13 13 13}有最大的和 20 20 20。现要求你编写程序,计算给定整数序列的最大子列和。

输入格式
第一行输入正整数 K K K( 1 ≤ K ≤ 1 0 6 1≤K≤10^6 1K106);
第二行输入 K K K个整数,中间以空格分隔。
输出格式
在一行中输出最大子列和。

输入样例
6 6 6
− 2 -2 2 11 11 11 − 4 -4 4 13 13 13 − 5 -5 5 − 2 -2 2
输出样例
20 20 20

解决方法

  1. 分治法
    取数列的中间点 a [ i 2 ] a{[\frac i2]} a[2i],那么最大子列的位置有三种情况:
    (1)完全在左半边数组
    (2)完全在右半边数组
    (3)跨立在中间点两侧
    若最大子列的位置为(1)或(2),可以利用递归解决。
    若最大子列的位置为(3),则求中间点左半边数组的最大后缀与右半边数组的最大前缀
    时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
int MaxSubArray(vector<int> a, int from, int to) {
	if (from == to) {
		return a[from];
	}
	int middle = (from + to) / 2;
	int maxSum1 = MaxSubArray(a, from, middle);
	int maxSum2 = MaxSubArray(a, middle + 1, to);
	/*求左边数组的最大后缀*/
	int currSum_left = a[middle], maxSum_left = a[middle];
	for (int i = middle - 1; i >= from; i--) {
		currSum_left += a[i];
		if (currSum_left > maxSum_left) {
			maxSum_left = currSum_left;
		}
	}
	/*求右边数组的最大前缀*/
	int currSum_right = a[middle + 1], maxSum_right = a[middle + 1];
	for (int i = middle + 2; i <= to; i++) {
		currSum_right += a[i];
		if (currSum_right > maxSum_right) {
			maxSum_right = currSum_right;
		}
	}
	int maxSum3 = maxSum_left + maxSum_right;
	return max(maxSum1, maxSum2, maxSum3);
}
  1. 分析法
    记数组的前缀和 p [ i ] = a [ 0 ] + a [ 1 ] + . . . + a [ i ] p[i]=a[0]+a[1]+...+a[i] p[i]=a[0]+a[1]+...+a[i]
    则子列和 s [ j + 1 , i ] = p [ i ] − p [ j ] s[j+1,i]=p[i]-p[j] s[j+1,i]=p[i]p[j]
    i : 0 → n − 1 i:0→n-1 i:0n1
    计算数组的前缀和 p [ i ] p[i] p[i]
    i : 0 → n − 1 i:0→n-1 i:0n1
    求出 m i n = m i n ( p [ 0 ] , p [ 1 ] , . . . p [ i ] ) min=min(p[0],p[1],...p[i]) min=min(p[0],p[1],...p[i])
    p [ i ] − m 即 为 以 a [ i ] p[i]-m即为以a[i] p[i]ma[i]结尾的数组的最大子列和
    时间复杂度 O ( n ) O(n) O(n)
int MaxSubArray(vector<int> a) {
	vector<int> p(a.size());
	p[0] = a[0];
	for (int i = 1; i < p.size(); i++) {
		p[i] = p[i - 1] + a[i];
	}
	int min = 0, maxSum = p[0];
	for (int i = 0; i < p.size(); i++) {
		if (p[i] < min) {
			min = p[i];
		}
		if (p[i] - min > maxSum) {
			maxSum = p[i] - min;
		}
	}
	return maxSum;
}
  1. 动态规划法
    S [ i ] S[i] S[i]为以 a [ i ] a[i] a[i]结尾的数组的最大子列和
    S [ i + 1 ] = m a x ( S [ i ] + a [ i + 1 ] , a [ i + 1 ] ) S[i+1]=max(S[i]+a[i+1], a[i+1]) S[i+1]=max(S[i]+a[i+1],a[i+1])
    时间复杂度 O ( n ) O(n) O(n)
int MaxSubArray(vector<int> a) {
	int maxSum = a[0];
	int currSum = a[0];
	for (int i = 1; i < a.size(); i++) {
		if (currSum + a[i] > a[i]) {
			currSum += a[i];
		}
		else {
			currSum = a[i];
		}
		if (currSum > maxSum) {
			maxSum = currSum;
		}
	}
	return maxSum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值