https://www.luogu.com.cn/problem/P1579
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入格式
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入
2009
输出
3 3 2003
题记:输入的n一定是一个奇数,三个数相加为奇数只有两种可能
1、两个偶数加一个奇数
素数里只有2是偶数,所以首先判断n-4是否为素数,如果是就直接输出2,2,n-4。
2、三个奇数
让i从3开始循环,保证i是素数时再让j=i循环,再保证j是素数,最后判断n-i-j是否为素数即可。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int s[10000],k=0;
int check(int x)//判断素数
{
for (int i = 2; i * i <= x; i++)
if (x % i == 0) return 0;
return 1;
}
int main()
{
int n;
cin >> n;
if (check(n - 4))
{
printf("2 2 %d\n", n - 4);
return 0;
}
for(int i=3;i<n;i++)
if(i%2!=0&&check(i))
for (int j = i; j < n; j++)
{
if(j%2!=0&&check(j))
if (check(n - i - j))
{
printf("%d %d %d\n", i, j, n - i - j);
return 0;
}
}
return 0;
}