完全背包问题

完全背包问题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

二维数组三层循环的朴素做法

#include<iostream>

using namespace std;
const int N=1005;
int dp[N][N];
int v[N],w[N];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
            for(int k=0;k*v[i]<=j;k++)
                dp[i][j]=max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
    
    cout<<dp[n][m];
    return 0;
}

优化成两层循环

#include<iostream>

using namespace std;
const int N=1005;
int dp[N][N];
int v[N],w[N];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++){
            dp[i][j]=dp[i-1][j];
            if(j>=v[i])
            dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
        }
    cout<<dp[n][m];
    return 0;
}

简化成一维

#include<iostream>

using namespace std;
const int N=1005;
int dp[N];
int v[N],w[N];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)
        for(int j=v[i];j<=m;j++)
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
    cout<<dp[m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值