自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(110)
  • 资源 (11)
  • 收藏
  • 关注

原创 HTML应用指南:利用POST请求获取接入比亚迪业态的充电桩位置信息

本文介绍了如何通过Python的requests库发送POST请求,从比亚迪网站获取充电桩位置信息,并进行数据处理和可视化。首先,我们讲解了如何构造POST请求,包括设置请求头和请求体。接着,详细描述了生成周边等距离点的方法,以确保覆盖更大范围内的充电桩信息。然后,通过解析响应数据,提取充电站的关键信息如名称、地址、经纬度等,并将其保存为CSV文件。由于数据使用的是高德坐标系(GCJ-02),我们进一步介绍了如何将坐标转换为WGS-84坐标系,以便在ArcGIS等工具中准确展示。

2025-02-08 21:42:02 810

原创 Python应用指南:一个库解决常见的国内坐标系转换需求

本文介绍了如何使用 coord-convert 库进行不同坐标系统的转换,包括 WGS84、GCJ-02(火星坐标系)和 BD-09(百度坐标系)。首先,通过 pip install coord-convert 安装库文件,并介绍其核心功能函数,如 wgs2gcj、gcj2wgs、gcj2bd 等。接着,通过具体场景展示了如何将高德地图和百度地图的坐标转换为 WGS84 坐标,以及如何进行混合转换。

2025-02-07 21:01:49 1183

原创 HTML应用指南:利用GET请求获取全国盒马门店位置信息

本文介绍了如何使用Python的requests库通过GET请求从盒马鲜生官方API获取门店位置信息,并详细讲解了数据获取、处理及可视化的全过程。首先,通过发送GET请求至指定URL并设置合适的请求头来获取包含全国各类型盒马门店的数据,然后将这些数据保存为CSV文件。接着,利用高德地图API进行地址到坐标的批量转换,解决部分模糊地址无法自动获取坐标的问题,并通过在线工具将坐标从GCJ-02转换为WGS84以确保在ArcGIS中展示时不会出现偏移。

2025-02-06 21:52:51 1612

原创 HTML应用指南:利用GET请求获取全国特斯拉充电桩位置信息

本文通过Python的requests库,使用HTTPGET请求从特斯拉官方API获取充电桩位置信息,并将其保存为CSV文件。首先,我们构造GET请求,解析响应数据,提取所有location_id,并保存至CSV文件。接着,根据每个location_id查询详细标签数据,并实现百度坐标系(BD09)到WGS84坐标系的转换,确保数据能在全球地图服务中准确展示。最后,我们将所有数据整合并保存为一个完整的CSV文件,包含充电桩位置及其相关信息

2025-01-17 14:46:03 1506

原创 HTML应用指南:利用GET请求获取微博用户特定标签的文章内容

本文介绍了如何使用Python的requests库通过GET请求抓取微博网页版上的用户发布内容,文章以上海地铁官方微博发布的每日客流信息为例。通过设置特定参数如uid(用户ID)、page(页码),并利用关键词“【地铁网络客流】”进行筛选,成功提取并保存了相关微博数据至CSV文件,并分析2024年上海地铁客流数据揭示了几个关键时段的变化特征,通过对2024年上海地铁客流数据的关键时段变化特征进行分析,我们能够更好地理解城市交通模式及其对社会活动的影响。

2025-01-15 21:26:30 1279

原创 HTML应用指南:利用GET请求获取星巴克门店位置信息

本文详细介绍了如何使用Python的requests库通过GET请求抓取星巴克门店信息,并将其保存为Excel文件以供进一步分析,接着,构建GET请求的具体步骤,包括设置URL参数、配置HTTP头部信息,并处理响应内容,提取到的信息被整理成结构化的表格格式,并利用Pandas库保存为Excel文件。该文件不仅包含门店的基本信息如名称、地址等,还包括重要的地理位置数据(经纬度)及营业时间等附加属性,并做了可视化分析。

2025-01-14 21:43:25 1405

原创 Python应用指南:高德交通态势数据(二)

本文探讨了通过生成多个相同大小的矩形区域来实现对更大范围道路交通态势的全面查询。针对城市交通网络复杂多变的特点,提出了一种多矩形查询的方法论,确保每个子矩形都符合高德地图API对于查询区域尺寸的要求,从而提高数据采集的准确性和完整性,通过获取多个矩形区域的交通数据,将所有数合并到一个文件中,基于name、direction和angle字段进行去重处理,最终输出一个包含去重后数据的SHP文件。这种方法不仅简化了数据处理流程,我们能够更好地理解城市交通动态。

2025-01-08 21:28:04 918

原创 Python应用指南:高德交通态势数据(一)

本文通过高德地图推出的交通态势查询API,用于实时获取指定区域或道路的交通状况,旨在帮助优化出行规划和提升城市管理效率。文章详细介绍了如何利用矩形区域查询功能高效获取路况信息,并通过Python脚本自动化处理流程,包括生成矩形范围、调用API获取数据、坐标转换及导出SHP文件等步骤。整个过程不仅简化了数据处理,还确保了地理信息系统间的兼容性,为智能交通系统的发展提供了有力支持。

2025-01-07 21:21:18 1973 2

原创 HTML与数据抓取:GET与POST​请求处理流程

本文详细介绍了请求数据时最重要的三个要点:请求URL、请求方法和状态代码。GET请求主要用于从服务器获取资源,而POST请求则用于提交数据,如表单或文件。文章进一步探讨了GET和POST请求的实现步骤,包括检查请求是否成功、分析响应内容以及遍历多页数据并保存到CSV文件中。为了提高效率和避免频繁访问带来的问题,文中建议在请求间加入延时(time.sleep())并使用代理池分散请求源。

2024-12-26 21:17:30 2050

原创 HTML与数据抓取:GET与POST方法详解

本文将详细讲解HTTP请求的基本概念、常见请求方法、状态消息,并重点比较GET和POST请求的区别,HTTP(HyperText Transfer Protocol,超文本传输协议)是互联网上应用最为广泛的一种网络协议,主要用于Web浏览器与Web服务器之间的数据通信。GET请求的数据通过URL传递,参数可见且受长度限制,适合幂等的查询操作,并支持缓存。而POST请求的数据位于请求体中,不显示在URL里,更安全且无长度限制,但通常不缓存且是非幂等的。

2024-12-24 21:41:28 1206

原创 从地铁客流讲开来:十二城日常地铁客运量特征

本文讨论了2024年10月28日至12月1日期间,包括北上广深四个超一线在内的12座城市地铁客运量在五个完整周内的显著周期性波动。数据显示,工作日客流量明显高于周末,地铁主要承担通勤任务,尤其是在超一线城市中,长距离通勤需求使地铁成为上班族首选。周五因提前下班和社交活动形成一周客流高峰,相比之下,重庆、武汉、西安和南京等旅游城市周末客流量高于工作日,受游客增加及居民放松生活方式影响。苏州、合肥、郑州等地公共交通系统尚在发展,地铁覆盖范围有限,导致日均客运量较低。

2024-12-20 21:34:58 1229

原创 利用高德API获取整个城市的公交路线并可视化(七)

本文详细解析了从高德获取的公交和地铁JSON文件的精细化处理过程,旨在提升数据质量和可用性,为后续交通规划、调度优化及用户服务提供坚实的数据支持。首先,通过两次遍历JSON文件,收集并确定每条线路的方向信息(dir字段),其中单方向线路设为'0',双方向线路根据编码值大小分别设为'0'和'1'。接着,利用自定义规则对原始数据进行清洗和转换,并通过GCJ02到WGS84的坐标转换确保地理坐标的准确性。处理后的数据被保存为CSV文件,包含线路类型、名称、经纬度(WGS84)、方向等信息。

2024-12-18 21:15:09 1830

原创 ArcGIS应用指南:在点处打断线图层要素

在地理信息系统(GIS)中,根据特定点要素(如公交站点)来分割线要素(如公交线路)是交通规划和城市设计中的常见需求。本文以厦门的公交线路为例,提出了一种通过Python脚本精准分割线要素的方法,确保每个站点仅匹配其所属线路,避免了基于单纯空间距离可能导致的误匹配问题。该方法首先读取线路和站点的Shapefile文件,并创建一个空GeoDataFrame用于存储处理后的数据。接着,遍历每条线路,找到与之对应的站点并计算它们到线路的最近点,然后根据相邻站点之间的最近点截断线路,生成新的线段。

2024-12-16 21:51:59 789

原创 GoTrackIt应用指南:共享单车时空轨迹优化

本文基于 GoTrackIt 包探讨了轨迹数据清洗功能,旨在提高GPS轨迹数据的质量和分析效率。首先,通过Python脚本对原始共享单车数据进行预处理,确保每条记录的时间精度和唯一标识符(agent_id)。接着,利用 GoTrackIt 的链式操作进行了去重停留点、增密和卡尔曼滤波平滑等处理,优化了轨迹数据的连续性和准确性。具体步骤包括:读取并转换CSV文件格式,创建唯一ID,调整时间字段精度,去除重复定位点,并应用轨迹清洗算法。最终输出清洗后的CSV文件及HTML可视化结果。

2024-12-13 20:42:42 1301

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(十二)

本文依据中国城市规划设计研究院(CAUPD)自2020年至2024年发布的《中国主要城市共享单车/电单车骑行报告》中关于厦门市的各项指标描述和分类方法进行了数据清洗。通过参考报告中的数据结论和标准分类体系,我们优化了清洗过程,确保其标准化和可比性。具体而言,本文首先对齐了时间、地理、用户、车辆及骑行特征等信息颗粒度,并引入了严格的订单有效性限制条件,如最小骑行距离50米、最小持续时间1分钟、定位点间隔不超过1分钟且距离不超过100米、订单超时3分钟重新编号、最大骑行距离15公里及最大持续时间1小时等。

2024-12-09 23:09:11 1974

原创 GoTrackIt应用指南:共享单车时空轨迹可视化

本文介绍了 GoTrackIt 平台如何通过集成并封装 Kepler.gl 的部分功能,利用 KeplerVis 类显著简化地理空间数据的分析与可视化过程。借助 GoTrackIt,开发者和数据分析师无需深入掌握 Kepler.gl 的底层细节,便可在网页端快速实现复杂地理数据的动态可视化。该平台提供了一系列便捷的功能,包括数据加载、地图样式配置、交互元素添加及可视化组件生成,极大地提高了工作效率。

2024-12-05 22:18:44 1171 3

原创 ArcGIS应用指南:ArcGIS制作局部放大地图

本文详细介绍了如何在ArcGIS Pro中制作一张包含局部放大效果的地图,以福建省厦门市为例。首先,加载全国省级行政区图层作为底图,并选择34in × 44in的页面模板。接着,插入新的数据框,添加市级行政区图层,并调整数据框属性以隐藏边框。然后,使用绘图工具绘制连接主图和局部放大图的线条。最后,根据需要添加路网图层,调整图层顺序,并导出最终地图。通过这些步骤,可以制作出一张详细且美观的地图,适用于地理分析和展示。

2024-11-25 21:24:44 2755 1

原创 Python应用指南:高德拥堵延时指数

本文介绍了如何利用高德地图的驾车路径规划API,结合Python脚本自动化监测上海花木路和芳甸路的交通状况,生成24小时的拥堵延时指数和平均速度数据,并绘制路线规划图。具体而言,本文通过每5分钟记录一次数据的方式,实现了对指定路段的全天候监测,从而能够全面了解早晚高峰的分布情况和平均道路运行速度等直观的路况数据。此外,本文还讨论了高德拥堵延时指数在交通管理、城市规划和公众信息服务中的实际应用,旨在为城市交通管理和研究提供实用的方法和工具。

2024-11-21 22:11:47 1793 2

原创 充电桩基础设施的时空大数据分析:以深圳市为例(二)

本文从深圳市充电桩的使用率、供需关系及其对价格的影响入手,通过数据分析揭示了充电桩使用模式的变化和用户的充电行为。研究表明,充电桩的使用率在一天中呈现明显的波峰和波谷,尤其是夜间低谷电价时段,充电桩使用量显著增加。春节期间,由于大量人口返乡,充电桩使用量出现明显下降。通过分析2022年9月1日至2023年8月31日的充电桩累计充电量分布,发现充电需求高的地区往往存在较密集的充电桩,有效分散了充电压力。然而,仍有一些标红区域因充电桩数量不足,导致充电需求得不到充分满足。

2024-11-16 20:16:39 1866

原创 充电桩基础设施的时空大数据分析:以深圳市为例(一)

本文对深圳市电动汽车充电基础设施的时空分布进行了深入分析。对2022年6月19日至7月18日和2022年9月至2023年9月期间的公共充电桩数据,包括充电桩的实时状态、位置、数量、占用情况及价格等详细信息进行可视化分析,研究现深圳市充电站分布存在显著不均衡性。旨在为优化充电基础设施布局、提升充电服务质量和推动电动汽车技术发展提供科学依据。

2024-11-11 21:55:18 1830 1

原创 基于地铁刷卡数据分析与可视化——以杭州市为例(二)

本文通过Python脚本对2019年1月8日至1月14日北京地铁A、B、C三条线路的进站客流数据进行了详细分析。首先,计算了每条线路在全天24小时内各站点的平均进站客流量,并绘制了折线图展示各站点的客流量变化趋势。接着,进一步分析了早晚高峰时段的15分钟客流峰值分布情况,发现早高峰主要集中在08:00-08:30,晚高峰集中在17:15-18:00。最后,通过计算每条线路各站点的平均进站客流,找出了每条线路进站客流前10名的站点。

2024-11-08 21:03:33 2241 7

原创 基于地铁刷卡数据分析与可视化——以杭州市为例(一)

本文分析了2019年1月8日至1月14日杭州市地铁刷卡数据,重点关注工作日的早晚高峰分布情况。数据涵盖3条线路81个地铁站,共7000万条记录。通过路网地图的可视化,展示了各线路站点的连接关系。选择2019年1月8日(周一)的数据进行详细分析,结果显示早高峰集中在7:00-9:00,晚高峰集中在17:00-19:00,且进站晚高峰的峰值比出站晚高峰早约一小时。进一步分析表明,A线的客流量最大,其次是B线和C线,早晚高峰的波动形态基本一致。这些结果有助于理解通勤人群的出行模式,为地铁运营和管理提供参考。

2024-10-30 21:49:47 2318 1

原创 Python应用指南:地铁两站之间最短路径查询

本文以厦门市地铁为例,通过Python脚本实现地铁两站之间最短路径的查询。具体步骤包括:从CSV文件中读取地铁站点和线路数据,使用NetworkX库构建地铁网络的图结构,利用Dijkstra算法计算最短路径,并使用Matplotlib库绘制地铁网络图,高亮显示最短路径。脚本还检查了图的连通性,确保图中的任意两个顶点都至少存在一条路径相连接。本文的方法同样适用于公交线路,只需增加公交线路字段来界定换乘线路。通过这一方法,乘客可以快速、准确地找到从起始站到目的站的最佳乘车线路。

2024-10-25 21:23:37 1279

原创 Python应用指南:利用高德地图API实现路径规划

本文介绍了如何使用高德地图API实现步行和驾车路径规划,并将结果保存为SHP和CSV文件。首先,通过高德地图API拾取坐标器获取起终点坐标。接着,构建请求参数并发送HTTP请求,解析返回的JSON数据,提取路径规划的详细信息,包括总距离、总时间、每一步的指令、距离、时间和路径。然后,使用Shapely库将路径坐标转换为WGS84坐标系,并创建LineString几何对象。最后,使用GeoPandas将路径数据保存为SHP文件,使用Pandas将详细步骤保存为CSV文件。

2024-10-23 21:18:01 2738 5

原创 ArcGIS应用指南:多尺度渔网创建

本文以厦门市行政区为例,详细介绍了如何创建渔网矢量文件。首先,将地理坐标系(WGS 84)投影为WGS 1984 Web Mercator (auxiliary sphere)。接着,使用“创建渔网”工具,设置渔网的保存路径、空间范围和格网大小(1000m x 1000m)。为了更精确地分析特定区域,将岛内(思明区、湖里区)的网格尺度进一步缩小为500m x 500m,而其他区域保持1000m x 1000m。通过裁剪和合并操作,最终生成了不同尺度的网格划分,为城市研究提供了更精细的数据支持。

2024-10-22 21:39:35 1633

原创 利用高德API获取整个城市的公交路线并可视化(六)

本文介绍了如何使用高德地图API获取并处理地铁线路数据,包括线路路径和站点信息。具体步骤如下:首先,通过高德开放平台的JS API 1.4 示例中的地铁线路查询模块,下载指定站点的JSON文件。接着,读取每个线路的折点坐标,并将这些坐标连成线段。然后,将高德坐标系(GCJ-02)转换为WGS84坐标系。最后,将处理后的数据导出为CSV和SHP文件,便于进一步分析和使用。代码实现了坐标转换、JSON文件处理和数据导出功能,适用于城市规划和交通分析

2024-10-18 21:08:48 866

原创 利用高德API获取整个城市的公交路线并可视化(五)

本文介绍了利用高德地图API获取公交线路数据的方法,并优化了数据处理流程,实现了数据的自动化导出。具体步骤包括:通过高德地图JS API 1.4 示例中的公交线路查询功能下载指定公交线路的JSON数据;读取JSON文件中的公交线路折点坐标并连成线段;使用坐标转换算法将高德坐标系(GCJ-02)的数据转换为国际通用的WGS84坐标系;最后,采用Python脚本处理转换后的数据,导出为CSV和SHP格式,便于地理信息系统(GIS)软件进一步分析和可视化。

2024-10-17 21:09:22 974

原创 Python应用指南:利用高德地图API获取公交可达圈

本文聚焦于通过公共交通(公交、地铁及组合)获取一定时间内可到达的范围。使用高德地图API的公交到达圈功能,对城市某一点的公交可达圈进行详细分析,旨在为城市规划、交通优化和个人出行提供数据支持。通过构建请求URL、坐标转换(GCJ-02 to WGS84)和点集转CSV等步骤,获取并可视化从虹桥火车站出发45分钟内可通过公交和地铁到达的区域。结果显示,向西最远可达徐泾新区,向东最远可达世纪大道,向北可达七宝老街,向南可达丰庄。

2024-10-14 21:05:42 1889

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(十一)

本文基于中规院2024年度《中国主要城市共享单车、电单车骑行报告》,分析了吕厝站100米范围内共享单车订单的目的地覆盖范围。通过核密度分析和订单起终点直线距离统计,发现订单终点主要集中在轨道出入口周边,平均出行距离为886米,表明共享单车主要用于短途出行。分析显示,吕厝站的共享单车高峰使用时段在早上的6:00-8:00,订单数量最多,出行目的地的最小几何范围最大。随着时间推移,订单数量和出行目的地的最小几何范围逐渐减小。本文建议优化站点布局、提升用户体验和加强政策支持,以更好地满足城市居民的出行需求。

2024-10-11 21:10:46 1346

原创 Python应用指南:利用高德地图API获取地铁站点出入口坐标

本文介绍了如何利用高德地图API获取地铁站出入口的POI数据,并将其处理成便于分析的格式。主要步骤包括:1) 通过高德坐标拾取器生成查询范围的矩形坐标;2) 将大矩形分割成多个小网格,以规避API请求限制,获取每个网格内的POI数据;3) 将获取的GeoJSON数据合并成CSV文件,便于后续处理;4) 对CSV文件中的坐标进行分列,并将坐标从高德坐标系(GCJ-02)转换为国际通用的WGS84坐标系。通过这些步骤,我们可以高效地获取和处理地铁站出入口的详细信息,为城市规划和交通研究提供数据支持。

2024-10-10 20:47:40 1132

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(十)

本文探讨了厦门市吕厝地铁站各个出入口的共享单车使用情况,通过分析订单起点数据,揭示了地铁站出入口布局对共享单车使用模式的影响。研究采用了两种方法获取出入口坐标:一是通过高德地图手动检索并转换为WGS84坐标系;二是利用高德地图API获取POI数据。统计结果显示,8号口、1号口、6号口和10号口的共享单车订单数量均超过100单,分别占总订单的20.1%、18.5%、17.6%和12.9%,表明这些出入口附近的人流量较大,需求较高。而4号口、2号口、5号口、12号口和3号口的使用量相对较少。

2024-10-09 20:59:41 1901

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(九)

本文以厦门市吕厝地铁站为例,探讨其800米范围内的综合发展情况。通过POI数据分析,吕厝站周边不仅拥有丰富的生活服务和公司企业资源,还具备一定的商务和住宅区,以及发达的交通设施。尽管医疗保健设施相对较少,但整体上仍是一个综合功能区。路网密度计算显示,吕厝站800米范围内的路网密度为15.53 km/km²,高于思明区平均水平,反映了其作为交通枢纽的高需求。公共交通站点500米覆盖率达到100%,确保了便利的交通连接。共享单车订单分布分析表明,主干道和商业区的使用频率最高,反映了这些区域的人流量大。

2024-09-30 21:11:59 1987

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(八)

本文基于POI数据,运用优劣解距离法(TOPSIS)对厦门市地铁站的发展情况进行综合评价。TOPSIS是一种多属性决策分析方法,通过计算每个备选方案与理想解和负理想解的距离,评估各个方案的优劣。首先,将不同属性值转换成统一的优化方向,然后通过最大最小值归一化方法进行标准化处理。接着,确定每个属性的理想解和负理想解,计算每个站点与理想解和负理想解的欧氏距离。最后,计算每个站点的相对接近度并进行排序,选择相对接近度最大的站点作为最优方案。结果显示,前10名站点中有7座属于1号线,2号线和3号线各一座。这些站点的

2024-09-26 21:39:26 1864

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(七)

本文基于POI数据,使用K均值聚类算法对厦门市岛内地铁站站点进行了分类分析。研究使用IBM SPSS Statistics 27.0软件及SPSSPRO在线平台进行数据处理和聚类分析。通过手肘法则确定最佳聚类数量为3类。结果显示,类别1主要以企业办公为主导,生活服务设施丰富但公司企业POI数量较少,适合居住;类别2为混合功能性站点,POI功能分布均衡,适合多种需求;类别3为商业生活服务为主导型站点,生活服务和公司企业POI数量均较高,适合既有居住需求又有工作需求的人群。研究发现,先建成的站点周边业态更为成熟

2024-09-25 21:42:20 1368

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(六)

本文基于2020年高德地图API平台获取的POI数据,研究了厦门市地铁站点的功能混合度。POI数据包括名称、大小类、地理坐标等,并将火星坐标系GCJ-02转换为WGS-84坐标系。选取了六大类POI(生活服务、医疗保健服务、商务住宅、科教文化服务、交通设施服务、公司企业)进行分析,研究范围涵盖厦门的三条地铁线,影响区设定为800米缓冲区。信息熵用于度量功能类型的分布情况,高信息熵表示功能类型分布均匀,低信息熵表示分布集中。

2024-09-24 20:44:02 2254

原创 Python应用指南:利用高德地图API获取POI数据

本文通过Python编程语言和高德地图API,实现对指定区域内的POI数据的高效获取和处理。首先,通过高德拾取坐标生成矩形区域,并打印坐标。接着,调用高德地图API获取POI数据,并使用多线程技术提高数据下载速度。数据保存为GeoJSON格式,便于后续的数据分析和可视化。最后,将多个GeoJSON文件转换为CSV格式,统一合并成一个文件。

2024-09-23 20:56:04 5151 2

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(五)

本文介绍了如何将电子围栏数据转换成可用的图层数据。通过解析包含坐标点的CSV文件,使用Python脚本将每个电子围栏的坐标点转换为多边形,并保存为Shapefile格式。这些多边形在ArcGIS中展示了电子围栏在路网和地铁站周边的分布情况。进一步,通过计算每个电子围栏区域的中心点并进行核密度分析,生成了共享单车在岛内不同区域的集中程度图。结合人口栅格数据和共享单车订单数据,发现三者在空间上高度重合,表明共享单车的投放策略与人口分布和使用需求紧密相关。

2024-09-20 20:46:14 2454

原创 城市脉络下的空间句法:中介中心性、接近中心性与绕行率的深度解析

本文深入探讨了sDNA“整体分析”(Integral Analysis)中的关键指标,包括中介中心性(Betweenness)、接近中心性(Closeness Centrality)和绕行率(Diversion Ratio)。中介中心性衡量网络中节点或边的重要性,通过分析厦门市的路网中介中心性值分布,发现海沧大桥、集美大桥等重要交通枢纽的中介中心性值最高,是交通拥堵的高发路段。接近中心性关注节点快速到达其他节点的能力,分析结果显示岛内中心区域的接近中心性值最高,交通便捷,适合布局公共服务设施。

2024-09-19 20:51:04 1409

原创 城市脉络下的空间句法:整合度与选择度的深度解析

本文深入探讨了空间句法中的关键概念——整合度与选择度,并详细解析了它们在城市规划中的应用。整合度(Integration)衡量的是空间元素在整个系统中的中心性和可达性,而选择度(Choice)则反映了一定区域内空间单元作为最短路径被穿行的频率。文中通过sDNA软件工具的具体指标NQPDH(x)和TPBtHn,展示了如何量化分析城市路网的局部与全局特性。结合实际案例,如城市内部与边缘区域的整合度差异,以及重要交通枢纽的选择度分析,揭示了这些指标在预测人流分布与交通拥堵方面的潜力。

2024-09-18 20:20:43 3335

原创 共享单车轨迹数据分析:以厦门市共享单车数据为例(四)

本文介绍了厦门市共享单车与地铁接驳距离的分析结果。研究发现,在地铁站周边600米范围内,共享单车订单量最为集中,超出此范围订单量急剧减少。不同时间段内,用户的容忍度存在差异,早晨7点至8点的通勤高峰时段,用户对距离的要求更高,倾向于在500米内找到共享单车;而在6点和9点时段,用户则更愿意在更大范围内寻找车辆。通过对大样本数据的分析,本文揭示了用户行为模式。此外,本文还考虑了厦门市地铁线路覆盖密度较低等因素对用户行为的影响,并指出当前分析基于有限样本数据,可能存在一定的局限性。

2024-09-14 20:41:33 1280

全国充电桩数据(2025年2月)

全国充电桩数据集提供了截至2025年2月的中国境内公共和私人充电桩的详细信息。数据总量7万7千多条,该数据集涵盖了全国范围内的充电桩分布情况,包括不同类型的充电桩及其具体位置、数量以及增长趋势等关键信息。这些数据对于研究新能源汽车基础设施的发展、优化充电桩布局以及评估充电服务的覆盖范围具有重要意义。标签包括,fid,高德坐标、wgs84坐标,type,pcode,数据经过严格的数据采集和验证流程,确保了其准确性和可靠性;

2025-02-07

2024全国行政区边界(省、市、县)

2024全国行政区边界(省、市、县),包括行政区编码,十段线

2024-08-19

人口普查数据(五 、六、七普)

人口普查数据(五 、六、七普)34个省、市、自治区

2024-08-19

人口1km精度栅格人口分布数据

分享一个人口1km精度栅格数据,LandScan是由美国能源部橡树岭国家实验室(ORNL)提供的全球人口分布数据集,具有最高分辨率的全球人口分布数据,是全球人口数据发布的社会标准,是全球最为准确、可靠,基于地理位置的,具有分布模型和最佳分辨率的全球人口动态统计分析数据库。这一数据集结合了地理信息系统(GIS)与遥感影像(RS)技术,以30弧秒(约1公里)的空间分辨率提供了详细的全球人口分布信息,反映24小时平均人口分布状况。

2024-08-17

COVID-19全球各个国家的感染者人数数据

分享一份 COVID-19比较权威的全球各个国家的感染者人数的 GitHub 项目数据,该项目截止目前获得29.1k的星标,并在柳叶刀发文,项目由约翰斯·霍普金斯大学系统科学与工程中心(Johns Hopkins University Center for Systems Science and Engineering, CSSE)提供支持。该项目提供了全球 COVID-19 疫情的实时数据和统计信息,显示了所有受影响国家/地区的 COVID-19 确诊病例、死亡和康复情况的位置和数量,数据源包括中国、台湾和欧洲各自的疾病控制和预防中心 (CDC)、香港卫生部、澳门政府和世界卫生组织,以及市级和州级卫生当局。

2024-08-17

全球手机基站位置数据,包含(2G-5G)基站

全球手机基站位置数据,包含(2G—5G)基站,更新于204年8月

2024-08-06

北上广深地铁全网客运量2024年5月26日-8月2日

北上广深地铁全网客运量2024年5月26日——8月2日

2024-08-04

百度迁徙数据2020-2024年春运40天迁入、迁出数据

百度迁徙数据2020-2024年春运40天迁入、迁出数据

2024-07-30

全国地铁站数据(wgs84)

字段包括('城市行政区划代码', '城市名', '地铁站ID', '地铁站名', '经度', '纬度', '所属线路')

2024-06-20

共享单车数据.csv(成都市2022年)

成都市共享单车数据。日期为2022年12月。数据属性包括uuid、order_id(订单id)、distance(距离)、create_time(创建时间)、finish_time(结束时间)、start_longitude(坐标x)、start_latitude(坐标y)、 bike_id(单车id)字段。

2024-06-19

sDNA 安装包最新版本2024-01-02

sDNA_setup_win_v4_1_0.msi 2024-01-02

2023-11-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除