多重背包II
简单的多重背包详见多重背包I
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
分析:
多重背包优化,二进制变成01背包,减小时间复杂度,主要原理就是十进制转换为2进制表示。
#include<iostream>
using namespace std;
const int N = 12010, M = 2010;
int n, m;
int v[N], w[N]; //逐一枚举最大是N*logS
int f[M]; // 体积<M
int main()
{
cin >> n >> m;
int cnt = 0; //每一个物品分为cnt组,分组的组别
for(int i=1;i<=n;i++){
int k=1,a,b,s;// k:组别里面的个数
cin>>a>>b>>s;
while(k<=s){
cnt++;//组别先增加
v[cnt]=a*k;//整体体积
w[cnt]=b*k;// 整体价值
s-=k;// s要减小
k*=2;// 组别里的个数增加
}
//若这一类物品中还有剩余物品
if(s>0){
cnt++;
v[cnt]=a*s;
w[cnt]=b*s;
}
}
n=cnt;
for(int i=1;i<=n;i++){//01背包优化
for(int j=m;j>=v[i];j--){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout << f[m] << endl;
return 0;
}
差不多的原理,但看起来简洁一些
#include<iostream>
using namespace std;
//多重背包可变成01背包
const int N = 1010, M = 2010;
int n, m;
int v[N], w[N],s[N]; //逐一枚举最大是N*logS
int f[M]; // 体积<M
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i]>>s[i];
for(int i=1;i<=n;i++){
for(int k=1;k<=s[i];k*=2){//多重背包二进制优化
for(int j=m;j>=k*v[i];j--){
f[j]=max(f[j],f[j-k*v[i]]+k*w[i]);
}
s[i]-=k;
}
if(s[i]!=0){//最后一个组别
for(int j=m;j>=s[i]*v[i];j--){
f[j]=max(f[j],f[j-s[i]*v[i]]+s[i]*w[i]);
}
}
}
cout << f[m] << endl;
return 0;
}