Redis缓存穿透和雪崩
服务的高可用问题!
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面,但同时,它也带来了一些问题,其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。
另外的一些典型问题就是,缓存穿透,缓存雪崩和缓存击穿。目前,业界也有比较流行的解决方案。
一、缓存穿透(查询不到数据导致)
概述
缓存穿透的概念简单,用户想要查询一个数据,发现 Redis内存数据库没有,也就是缓存没有命中。 于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库。这给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。
解决方案
1.布隆过滤器
(代码维护比较复杂,效果挺好的)
布隆过滤器是一种基于概率的数据结构,主要使用爱判断当前某个元素是否在该集合中,运行速度快。对所有可能查询的参数以 hash 形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力。
有个小问题是:当你使用它的 contains 方法去判断某个对象是否存在时,它可能会误判。也就是说布隆过滤器不是特别不精确,但是只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率(这是可以接受的呀 ~)。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。
特点:
.一个非常大的二进制位数组(数组中只存在 0 和 1)
拥有若干个哈希函数(Hash Function)
在空间效率和查询效率都非常高
布隆过滤器不会提供删除方法,在代码维护上比较困难。
每个布隆过滤器对应到 Redis 的数据结构里面就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。( 每一个 key 都通过若干的hash函数映射到一个巨大位数组上,映射成功后,会在把位数组上对应的位置改为1。)
那为什么布隆过滤器会存在误判率呢?
其实它会误判是如下这个情况:
当 key1 和 key2 映射到位数组上的位置为 1 时,假设这时候来了个 key3,要查询是不是在里面,恰好 key3 对应位置也映射到了这之间,那么布隆过滤器会认为它是存在的,这时候就会产生误判(因为明明 key3 是不在的)。
要提高布隆过滤器的准确率,就要说到影响它的三个重要因素:
哈希函数的好坏
存储空间大小
哈希函数个数
hash函数的设计也是一个十分重要的问题,对于好的hash函数能大大降低布隆过滤器的误判率。
(这就好比优秀的配件之所以能够运行这么顺畅就在于其内部设计的得当。)
同时,对于一个布隆过滤器来说,如果其位数组越大的话,那么每个key通过hash函数映射的位置会变得稀疏许多,不会那么紧凑,有利于提高布隆过滤器的准确率。同时,对于一个布隆过滤器来说,如果key通过许多hash函数映射,那么在位数组上就会有许多位置有标志,这样当用户查询的时候,在通过布隆过滤器来找的时候,误判率也会相应降低。
对于其内部原理,有兴趣的可以看看关于布隆过滤的数学知识,里面有关于它的设计算法和数学知识。(其实也挺简单~)
2.缓存空对象
(代码维护简单,但是效果不是很好)
缓存空对象它就是指一个请求发送过来,如果此时缓存中和数据库都不存在这个请求所要查询的相关信息,那么数据库就会返回一个空对象,并将这个空对象和请求关联起来存到缓存中,当下次还是这个请求过来的时候,这时缓存就会命中,就直接从缓存中返回这个空对象,这样可以减少访问数据库的压力,提高当前数据库的访问性能。
(当存储层不命中后,即使返回的空对象也将其缓存起来,同步会同步一个过期时间,之后再访问这个数据将会从存储中获取,保护了后端数据源。)
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储,因为这当中可能会有很多的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
二、缓存击穿(请求太多 缓存过期)
概述
这里需要注意和缓存穿透的区别。缓存击穿,是指一个 key 非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个 key 在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
当某个 key 在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新的数据,并回写缓存,会导致数据库瞬间压力过大。
归纳起来:造成缓存击穿的原因有两个。
(1)一个“冷门”key,突然被大量用户请求访问。
(2)一个“热门”key,在缓存中时间恰好过期,这时有大量用户来进行访问。
解决方案
1、设置热点数据永不过期
从缓存层来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。
2、加互斥锁
分布式锁:使用分布式锁,保证对于每个 key 同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因对分布式锁的考验很大。
三、缓存雪崩
概念
缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis宕机!
产生雪崩的原因之一,比如马上就要双十二零点,,很快就会有一波抢购,这波商品时间比较集中的放在了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都会过期了。而对这批商品的访问查询,都落到数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会到达存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
原因:
Redis突然宕机
大部分数据失效
当缓存GG没有失效的时候是这样的:
当缓存GG(失效)的时候却是这样的:
其实集中时期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或者断网。因为自然形成 的缓存雪崩,一定是某个时间段中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对于数据库服务器的压力是不可预的,很有可能瞬间就把数据库压垮。
解决方案
1、Redis 高可用
这个思想的含义是,既然 redis 有可能挂掉,那我多增设几台 redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。
2、限流降级
这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制数据库写缓存的线程数量。比如对某个 key 只允许一个线程查询数据和写缓存,其他线程等待。
3、数据预热
数据预热的含义是在正式部署之前,把可能的数据线预先访问一遍,这样部分可能大量访问的数据就会加载到缓存。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
4、不同的过期时间
设置不同的过期时间,让缓存失效的时间点尽量均匀。
注:资料来源于:https://mp.weixin.qq.com/s/HSJLo5nvReGtfK9dQ2pj1g
https://www.bilibili.com/video/BV1S54y1R7SB?p=36