机器学习
文章平均质量分 90
机器学习算法【理论】+【实战】
可可卷
【python算法】
【数据分析】
【数学建模】
【机器学习】
【深度学习】
【数据可视化】
展开
-
【机器学习】pycm--史上最强多分类性能评估库
在普通分类问题上,我们一般通过sklearn.metrics库评估模型,比如使用混淆矩阵,但通过pycm,我们能够更好的评估预测精度!原创 2021-12-20 17:07:11 · 5548 阅读 · 84 评论 -
【深度学习】入门之keras
速查手册30s理解基本概念符号计算Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还 是TensorFlow,都是一个“符号主义”的库。符号主义的计算首先定义各种 变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。建立好的计算图需要编译已确 定其内部细节,然而,此时的计算图还是一个“空壳子”,里面没有任何实际的数据,只有当你把需要运 算的输入放进去后,才能在整个模型中形成数据流,从而形成输出值。Keras的模型搭建原创 2021-12-06 19:28:50 · 1645 阅读 · 1 评论 -
【深度学习】实战之MNIST
既是实战,也是入门~MNIST介绍MNIST是机器学习领域的一个经典数据集,内含60000张训练图像与10000张预测图像,每张图片为28像素*28像素的灰度图像,并被划分到10个类别中(0-9)。MNIST手写数字识别,正是深度学习里的Hello World。加载数据集mnist数据预加载在keras库中,其中包括4个numpy数组from keras.datasets import mnist(train_images,train_labels),(test_images,test_la原创 2021-12-06 19:29:49 · 4766 阅读 · 25 评论 -
【机器学习】KNN(K近邻)算法
KNN即k近邻法,k-nearest neighbor,是1967年由Cover T和Hart P提出的一种基本分类与回归方法,也是机器学习的基础算法之一。本文参考教程:《机器学习实战》KNN算法原理 在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,原创 2021-12-05 21:26:50 · 1254 阅读 · 17 评论