2021-05-19

寻找两个数组的中位数

题目:
给定两个有序数组,要求找到两个数组的中位数,初看这道题,我大概想到了两种解题思路。

*方法一,合并俩数组,得到一个大的有序数组,然后获取这个新数组的中间位置的元素,即为所求的中位数。

*方法二,与方法一不同,此方法不需要合并俩数组,只需要分别找到俩数组中位数的位置,由于这俩数组的的长度是已知的。维护两个指针,初始时分别指向两个数组下标0的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

时间空间复杂度分析

假设两个有序数组的长度分别为 mm 和 nn,上述两种思路的复杂度如何?

第一种思路的时间复杂度是 O(m+n)O(m+n),空间复杂度是 O(m+n)O(m+n)。第二种思路虽然可以将空间复杂度降到 O(1)O(1),但是时间复杂度仍是 O(m+n)O(m+n)。

如何把时间复杂度降低到 O(\log(m+n))O(log(m+n)) 呢?如果对时间复杂度的要求有 \loglog,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+nm+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2(m+n)/2 个元素,当 m+nm+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2(m+n)/2 个元素和第 (m+n)/2+1(m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 kk 小的数,其中 kk 为 (m+n)/2(m+n)/2 或 (m+n)/2+1(m+n)/2+1。

假设两个有序数组分别是 \text{A}A 和 \text{B}B。要找到第 kk 个元素,我们可以比较 \text{A}[k/2-1]A[k/2−1] 和 \text{B}[k/2-1]B[k/2−1],其中 // 表示整数除法。由于 \text{A}[k/2-1]A[k/2−1] 和 \text{B}[k/2-1]B[k/2−1] 的前面分别有 \text{A}[0,…,k/2-2]A[0…k/2−2] 和 \text{B}[0,…,k/2-2]B[0…k/2−2],即 k/2-1k/2−1 个元素,对于 \text{A}[k/2-1]A[k/2−1] 和 \text{B}[k/2-1]B[k/2−1] 中的较小值,最多只会有 (k/2-1)+(k/2-1) \leq k-2(k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 kk 小的数了。

因此我们可以归纳出三种情况:

如果 \text{A}[k/2-1] < \text{B}[k/2-1]A[k/2−1]<B[k/2−1],则比 \text{A}[k/2-1]A[k/2−1] 小的数最多只有 \text{A}A 的前 k/2-1k/2−1 个数和 \text{B}B 的前 k/2-1k/2−1 个数,即比 \text{A}[k/2-1]A[k/2−1] 小的数最多只有 k-2k−2 个,因此 \text{A}[k/2-1]A[k/2−1] 不可能是第 kk 个数,\text{A}[0]A[0] 到 \text{A}[k/2-1]A[k/2−1] 也都不可能是第 kk 个数,可以全部排除。

如果 \text{A}[k/2-1] > \text{B}[k/2-1]A[k/2−1]>B[k/2−1],则可以排除 \text{B}[0]B[0] 到 \text{B}[k/2-1]B[k/2−1]。

如果 \text{A}[k/2-1] = \text{B}[k/2-1]A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

可以看到,比较 \text{A}[k/2-1]A[k/2−1] 和 \text{B}[k/2-1]B[k/2−1] 之后,可以排除 k/2k/2 个不可能是第 kk 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 kk 的值,这是因为我们排除的数都不大于第 kk 小的数。

有以下三种情况需要特殊处理:

如果 \text{A}[k/2-1]A[k/2−1] 或者 \text{B}[k/2-1]B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 kk 的值,而不能直接将 kk 减去 k/2k/2。

如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 kk 小的元素。

如果 k=1k=1,我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9
两个有序数组的长度分别是 44 和 99,长度之和是 1313,中位数是两个有序数组中的第 77 个元素,因此需要找到第 k=7k=7 个元素。

比较两个有序数组中下标为 k/2-1=2k/2−1=2 的数,即 \text{A}[2]A[2] 和 \text{B}[2]B[2],如下面所示:

A: 1 3 4 9

B: 1 2 3 4 5 6 7 8 9

由于 \text{A}[2] > \text{B}[2]A[2]>B[2],因此排除 \text{B}[0]B[0] 到 \text{B}[2]B[2],即数组 \text{B}B 的下标偏移(offset)变为 33,同时更新 kk 的值:k=k-k/2=4k=k−k/2=4。

下一步寻找,比较两个有序数组中下标为 k/2-1=1k/2−1=1 的数,即 \text{A}[1]A[1] 和 \text{B}[4]B[4],如下面所示,其中方括号部分表示已经被排除的数。

A: 1 3 4 9

B: [1 2 3] 4 5 6 7 8 9

由于 \text{A}[1] < \text{B}[4]A[1]<B[4],因此排除 \text{A}[0]A[0] 到 \text{A}[1]A[1],即数组 \text{A}A 的下标偏移变为 22,同时更新 kk 的值:k=k-k/2=2k=k−k/2=2。

下一步寻找,比较两个有序数组中下标为 k/2-1=0k/2−1=0 的数,即比较 \text{A}[2]A[2] 和 \text{B}[3]B[3],如下面所示,其中方括号部分表示已经被排除的数。

A: [1 3] 4 9

B: [1 2 3] 4 5 6 7 8 9

由于 \text{A}[2]=\text{B}[3]A[2]=B[3],根据之前的规则,排除 \text{A}A 中的元素,因此排除 \text{A}[2]A[2],即数组 \text{A}A 的下标偏移变为 33,同时更新 kk 的值: k=k-k/2=1k=k−k/2=1。

由于 kk 的值变成 11,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 kk 个数,由于 \text{A}[3] > \text{B}[3]A[3]>B[3],因此第 kk 个数是 \text{B}[3]=4B[3]=4。

A: [1 3 4] 9

B: [1 2 3] 4 5 6 7 8 9

结果展示及代码实现

在这里插入图片描述
package com.hzf;

class Solution{
public double findMedianSortedArrys(int[] nums1,int[] nums2){
int length1=nums1.length,length2=nums2.length;
int totalLength=length1+length2;
if (totalLength%2==1){
int midIndex=totalLength/2;
double median=getKthlement(nums1,nums2,midIndex+1);
return median;
}else {
int midIndex1=totalLength/2-1,midIndex2=totalLength/2;
double median=(getKthlement(nums1,nums2,midIndex1)+getKthlement(nums1,nums2,midIndex2+1))/2.0;
return median;
}
}

public int getKthlement(int[] nums1,int[] nums2,int k){
    /**
     *要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
     * 这里的 "/" 表示整除
     * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
     * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
     *取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
     *这样 pivot 本身最大也只能是第 k-1 小的元素
     *如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
     *如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
     *由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
     */
    int length1=nums1.length,length2=nums2.length;
    int index1=0,index2=0;
    int kthElement=0;
    while (true){
        //边界情况
        if (index1==length1){
            return nums2[index2+k-1];
        }
        if (index2==length2){
            return nums1[index1+k-1];
        }
        if (k==1){
            return Math.min(nums1[index1],nums2[index2]);
        }
        //正常情况
        int half=k/2;
        int newindex1=Math.min(index1+half,length1)-1;
        int newindex2=Math.min(index2+half,length2)-1;
        int pivot1=nums1[newindex1],pivot2=nums2[newindex2];
        if (pivot1<=pivot2){
            k-=(newindex1-index1+1);
            index1=newindex1+1;
        }else {
            k-=(newindex2-index2+1);
            index2=newindex2+1;
        }
    }
}

}
class JavaDemo{
public static void main(String[] args) {
int[] num1=new int[]{3,6,96,6,136,25,45,633};
int[] num2=new int[]{6,98,256,1,65,4,35,65,16,97};
System.out.println(“俩有序数组合并后新数组的中位数为:”+new Solution().findMedianSortedArrys(num1,num2));
}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值