CutBlur与RCAN-it

两者都不是对神经网络结构的研究。CutBlur注重于图像数据增强的过程,而RCAN-it则是对网络的训练策略进行研究。两篇文章的方法,也都是受到High level task里面的一些方法的启发。这些涨点技巧,可以用于面向商业的模型,和一些比赛等。

1 RCAN-it

https://arxiv.org/abs/2201.11279 GitHub - zudi-lin/rcan-it: Revisiting RCAN: Improved Training for Image Super-Resolution

研究RCAN在采用新的训练策略后,能否焕发第二春,与最新的SOTA模型一战。

PS:RCAN x2论文数据

 1、加大batch size与学习率

线性增加学习率效果不佳,就翻了一倍,作为baseline:BS=256, η=0.0032

 2、SiLU的使用、更长时间的训练、更大的Patch都可以涨点,后两者说明原网络欠拟合。

FP16半精度训练,省资源但性能下降

Stochastic depth 随机跳残差块,显著下降,由于梯度问题。
color augmentations 色彩增强,导致下降,但是由于manga109是动漫图像,因此有所提升。

3、叠加这几种带来增益的方法

4、Warm start

利用x2的上采样前部分,并固定,单训练上采样部分(tail)

PS:RCAN x3 原论文

RCAN x4 原论文

 5、结果对比

有明显的提升,也几乎追平了Swin Transformer。详见论文

2 CutBlur

CVPR2020-CutBlur-专用于图像复原的数据增广策略 | Rethinking Data Augmentation for Image Super-resolution_chenzy_hust的博客-CSDN博客_cvpr 锐化之前自己在SISR中做过mixup等增广,发现效果甚微。作者的工作量挺大的,提出了专用于图像复原领域的数据增广策略,简单有效!Github:https://github.com/clovaai/cutblurAbstract:数据扩充是提高深度网络性能的有效方法。不幸的是,当前的方法主要是针对高级视觉任务(例如分类)而开发的,很少研究用于低级视觉任务(例如图像复原)的方法。在本文中,我...https://blog.csdn.net/weixin_42096202/article/details/105626842这篇博客十分详细地阐述了此文。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值