两者都不是对神经网络结构的研究。CutBlur注重于图像数据增强的过程,而RCAN-it则是对网络的训练策略进行研究。两篇文章的方法,也都是受到High level task里面的一些方法的启发。这些涨点技巧,可以用于面向商业的模型,和一些比赛等。
1 RCAN-it
https://arxiv.org/abs/2201.11279 GitHub - zudi-lin/rcan-it: Revisiting RCAN: Improved Training for Image Super-Resolution
研究RCAN在采用新的训练策略后,能否焕发第二春,与最新的SOTA模型一战。
PS:RCAN x2论文数据
1、加大batch size与学习率
线性增加学习率效果不佳,就翻了一倍,作为baseline:BS=256, η=0.0032
2、SiLU的使用、更长时间的训练、更大的Patch都可以涨点,后两者说明原网络欠拟合。
FP16半精度训练,省资源但性能下降
Stochastic depth 随机跳残差块,显著下降,由于梯度问题。
color augmentations 色彩增强,导致下降,但是由于manga109是动漫图像,因此有所提升。
3、叠加这几种带来增益的方法
4、Warm start
利用x2的上采样前部分,并固定,单训练上采样部分(tail)
PS:RCAN x3 原论文
RCAN x4 原论文
5、结果对比
有明显的提升,也几乎追平了Swin Transformer。详见论文