NTIRE2020~21 SISR超分 总结

18~20 参考https://blog.csdn.net/weixin_46773169/article/details/108833993

目录

NTIRE 2021 Learning the Super-Resolution Space Challenge

一、任务

二、评价标准 

三、结果

NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results

一、任务

二、评价标准

三、结果

NTIRE 2021 Challenge on Video Super-Resolution

一、任务

二、评价标准

三、结果

NTIRE 2020 Challenge on Real-World Image Super-Resolution

一、任务

二、评价标准

三、结果

NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution

一、任务

二、评价标准

三、结果


NTIRE 2021 Learning the Super-Resolution Space Challenge

一、任务

在大尺寸的超分辨率中存在多个可能解,要求模型可以提供在4x和8x上同一个LR对应的任意多个HR结果。

二、评价标准 

数据集为DIV2K bicubic downsample

1、Photo-realism: LPIPS metric,Mean Opinion Rank (MOR) for the user study

2、The spanning of the SR Space

3、Low Resolution Consistency

三、结果

NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results

一、任务

Given a RAW noisy burst as input, the task in the challenge was to generate a clean RGB image with 4 times higher resolution.
连拍的raw→4x的RGB
The challenge contained two tracks; Track 1 evaluating on synthetically generated data, and Track 2 using real-world bursts from mobile camera.
Track1是根据GT人为退化生成的数据 Track 2 是不同的设备拍摄对应的数据

二、评价标准

Track 1:PSNR SSIM LPIPS

数据集为Goutam Bhat, Martin Danelljan, L. Gool, and R. Timofte. Deep burst super-resolution. In CVPR, 2021

论文中所给出的数据集(训练集、测试集)
Track 2:Deep burst super-resolution中的处理方法进行处理,standard image quality metrics(PSNR, SSIM, and LPIPS)和MOR
数据集:BurstSR dataset consists of bursts captured using a hand held camera, along with a corresponding HR image captured using a DSLR.

三、结果

 

NTIRE 2021 Challenge on Video Super-Resolution

一、任务

Track 1: 传统

reconstruct 30 HR sequences from given × 4 downsampled videos from the REDS [ 37 ] dataset, similar to the conventional VSR algorithms.
Track 2:
spatio-temporal super-resolution (STSR) 12fps视频,一边插帧一边超分

二、评价标准

数据集REDS

Track 1:PSNR and SSIM LPIPS
Track 2:PSNR and SSIM LPIPS

三、结果

 冠军方案解读:https://blog.csdn.net/weixin_47196664/article/details/115922761

NTIRE 2020 Challenge on Real-World Image Super-Resolution

一、任务

真实世界图像的超分

only one set of source input images is therefore provided along with a set of un paired high-quality target images
Track 1: Image Processing artifacts , the aim is to super-resolve images with synthetically generated image processing artifacts
Track 2: Smartphone Images , real low-quality smart phone images have to be super-resolved.
In both tracks, the ultimate goal is to achieve the best per ceptual quality, evaluated using a human study.
由于真实情景下,LR-HR对 难以获得,所以 In this challenge, the aim is instead to learn super-resolution from unpaired data and without any restricting assumptions on the input image formation.

二、评价标准

No paired reference HR images are available for training.只提供HR

Track1 : the input is generated with a common image signal processing operation to simulate the real-world SR case where we can measure against a undisclosed ground truth 输入人为模拟的退化图像

PSNR SSIM

训练集来自  Unsupervised learning for real-world super-resolution ICCVW2019

Track 2 we the input are untouched iPhone3 images. 数据集是DPED
MOR

三、结果

 Top解读:https://mp.weixin.qq.com/s/LwMLjjUr4wnzRqsgbanrrQ

NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution

一、任务

x16 且能够生成具有最佳感知质量并与真实情况相似的高分辨率结果

Extreme:倍数很大 x16

Perceptual: 感知质量要求高

二、评价标准

DIV8K数据集

LPIPS (Learned Perceptual Image Patch Similarity)  and no-reference PI(Perceptual Index)

三、结果

Top解读:https://mp.weixin.qq.com/s/nj_C_LXFpWQZASc4ITJmmA

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值