数组中数字出现的次数Ⅰ,Ⅱ(位运算)


一、数组中数字出现的次数Ⅰ

题目

一个整型数组 nums里除两个数字之外,其他数字都出现了两次。请写程序找出这两个只出现一次的数字。要求时间复杂度是O(n),空间复杂度是O(1)。

示例 1:

输入:nums = [4,1,4,6]
输出:[1,6] 或 [6,1]

示例 2:

输入:nums = [1,2,10,4,1,4,3,3]
输出:[2,10] 或 [10,2]

限制: 2 <= nums.length <= 10000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-lcof

1.菜鸟代码

在不看要求时间复杂度是O(n),空间复杂度是O(1)的情况下,这题的难度就简单的多,暴力发,hash表统计就能算出来。
例如:

public int[] singleNumbers(int[] nums) {
        int n=nums.length;
        int index=0;
        Map<Integer,Integer> map = new HashMap<>();
        for(int i=0;i<n;i++){
            map.put(nums[i],map.getOrDefault(nums[i],0)+1);
        }
        for(Map.Entry<Integer,Integer> entry: map.entrySet()){
            if(entry.getValue()==1){
                nums[index++]=entry.getKey();
            }
        }
        return Arrays.copyOfRange(nums,0,index);
    }

使用map,num[i]为key,出现的次数为value,最后遍历hash表找value为1的key。

2.位运算

首先介绍下位运算:

  • 异或:1^0=1, 0^0=0 , 1^1=0。(0异或任意数x等于x,这题将用到异或的特点)
  • 位与:1&1=1,0&1=0,0&0=0
  • 位或:1|1=1,1|0=1,0|0=0

解题思路:
当数组中只有一个数出现一次,其他出现两次的情况下,例如[a,a,b,b…x]
那么有(a ^ a ^ b ^ b ^…x)=x
那么在这种情况下只需要遍历数组,就能得到答案

for(int num:nums) res^=num;
return res;

但现在题目中是有两个只出现一次的数。
那么我们是否可以在
[a,a,b,b…x,y]–>(a ^ a ^ b ^ b… ^ x ^ y)=(0 ^ x ^ y) = n

这个异或的结果n中找出x和y的不同,从而把数组分割成两个子数组再去进行异或操作找出答案呢?(很明显可以的)

  1. 从刚刚介绍完异或的规律,两个数异或,当分别为0,1才能为1。(1 ^ 0 = 1)
  2. 位与操作只有1&1才能为1

我们可以初始化一个m=1,去位与x^y的结果n,找到二进制n中的1
例如:
x: ***000
y: ***100 那么m的结果为100

while((m&n)==0) m<<=1;

并以此m为分割点,把数组分割成分别含有x,y的两个子数组。
分割之后的数组中只存在一个只出现1次的数,那么只需要异或就能得到答案。
代码如下:

class Solution {
    //两个数异或,当分别为0,1才能为1
    //定义一个m&(a^b),找到(a^b)中第一个1
    //这个1所在的位置即是二进制a与b中不同的地方(可能唯一也可能还有,但只需要知道一个就好)
    //例如a:***000
    //    b:***100
    //那么m:000100
    //并以此为分界点,把数组分成&m==1,&m==0,两子数组,再子数组中异或就能得到两个不同的数!!!
    public int[] singleNumbers(int[] nums) {
        int x=0,y=0,n=0,m=1;
        //0异或任何数等于任何数
        for(int num:nums) n^=num;
        //直到找到m&n为1时退出
        while((m&n)==0) m<<=1;
        for(int num:nums){
            if((num&m)==0) x^=num;
            else y^=num;
        }
        return new int[]{x,y};
    }
}

参考力扣用户Krahets的解析
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-lcof/solution/jian-zhi-offer-56-i-shu-zu-zhong-shu-zi-tykom/
来源:力扣(LeetCode)

二、数组中数字出现的次数Ⅱ

题目

在一个数组 nums 中除一个数字只出现一次之外,其他数字都出现了三次。请找出那个只出现一次的数字。

示例 1:

输入:nums = [3,4,3,3]
输出:4

示例 2:

输入:nums = [9,1,7,9,7,9,7]
输出:1

限制:
1 <= nums.length <= 10000
1 <= nums[i] < 2^31

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-ii-lcof

1.菜鸟代码

依据第一题的思路,没有条件我创造条件! <-----(仿佛有啥大病)

public int singleNumber(int[] nums) {
        Map<Integer,Integer> map = new HashMap<>();
        int n=0;
        for(int i =0;i<nums.length;i++){
            map.put(nums[i],map.getOrDefault(nums[i],0)+1);
            if(map.get(nums[i])==3)
                nums[i]=0;
        }
        for(int num:nums){
            n^=num;
        }
        return n;
    }

2.位运算

思路:
如例题1:nums = [3,4,3,3] ,转化成二进制如下:
3:011
3:011
3:011
4:100 统计nums数组中,所有数的二进制中第i位1出现的次数
m:133
除3取模=100
答案就出来了!

public int singleNumber(int[] nums) {
		//bit依次统计nums所有二进制数中第i位出现的次数
        int res = 0,bit = 0;
        for(int i=31;i>=0;i--){
            for(int num:nums){
            	//统计第i位的数量
                bit+=(num>>i)&1;
            }
            res<<=1;
            res |= bit%3;
            bit=0;
        }
        return res;
    }

统计第i位1的数量,比如1011,统计第2位则右移2位 >>2=10,
10&1=0 --》bit+=0
res左移一位,例如当前res为101,左移=1010,
再去或运算(bit%3),当(bit%3)结果为1,那么res=1011 。。。
因为res是一直左移的,所以第一次左移赋值的位数是二进制中最左边的值,所以i从31开始(因为题目有限制:1 <= nums[i] < 2^31)

思路参考力扣解析


第二题还有更牛逼的算法
运用了有限状态自动机(俺一知半解就不误人子弟了)
详情请看力扣用户Krahets的解析
https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-ii-lcof/solution/mian-shi-ti-56-ii-shu-zu-zhong-shu-zi-chu-xian-d-4/

侵删!(如有侵权,请私信我,秒删!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值