movielens1M数据处理

本文详细介绍了如何运用Python进行机器学习和数据分析,专注于处理movielens1M数据集,为构建推荐系统提供数据支持。通过引用的CSDN博客,读者可以学习到数据预处理、特征工程等关键步骤。
摘要由CSDN通过智能技术生成
#coding=gbk
# MovieLens 1M数据集含有来自6000名用户对4000部电影的100万条评分数据。
# 分为三个表:评分,用户信息,电影信息。这些数据都是dat文件格式
# ,可以通过pandas.read_table将各个表分别读到一个pandas DataFrame对象中
import pandas as pd
import time 
start = time.perf_counter()
filename1 =r'ml-1m\users.dat'
filename2 = r'ml-1m\ratings.dat'
filename3 = r'ml-1m\movies.dat'
pd.options.d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值