pytorch
行走的鸭蛋
日供一卒,功不唐捐!!
展开
-
Pytorch知识集锦(一) torch x=x.view(x.size()[0],-1)
在写特征提取网络的时候,在卷积网络和分类网络的相结合的地方,需要用到将特征转换成一个列数为一的一维向量: #coding=utf-8 #torch x=x.view(x.size()[0],-1) import torch a=torch.arange(1,17) #[1,16] print(a) print(a.size(0)) #[16] 一行,十六列 #x=x.view(x.size(0),-1) b=a.view(a.size()[0],-1) #b=a.view(a.size(0),-1原创 2020-07-25 21:20:55 · 344 阅读 · 0 评论 -
pytorch: utils.data 使用案例(自定义数据集)
pytorch: utils.data 使用案例(自定义数据集) utils.data包括Dataset和DataLoader。 torch.utils.data.Dataset为抽象类。 自定义数据集需 要继承这个类, 并实现两个函数, 一个是__len__, 另一个是__getitem__, 前者提供数据 的大小(size) , 后者通过给定索引获取数据和标签。 __getitem__一次只能获取一个数据, 所以需要通过torch.utils.data.DataLoader来定义一个新的迭代器, 实现原创 2020-06-23 22:20:24 · 685 阅读 · 0 评论