信号与系统(郑君里)第一章-绪论 1-21 课后习题解答

题目详情:判断下列系统是否是可逆的。若可逆,给出它的逆系统;若不可逆,指出使该系统产生相同输出的两个输入信号。

(1)r(t) = e(t - 5)

(2)r(t) = \frac{d}{​{dt}}e(t)

(3)r(t) = \int_{ - \infty }^t {e(\tau )d\tau }

(4)r(t) = e(2t)

答案解析:

tips:这里考察的是可逆系统的概念,若系统再不同的激励信号作用下产生不同的响应,则称此系统为可逆系统。对于每个可逆系统都存在一个“逆系统”,当原系统与此逆系统级联组合后,输出信号与输入信号相同。若不同的激励信号产生了相同的响应,则该系统是不可逆的。

这里根据(2)和(3)我们可以看出一个结论:一个可逆系统的逆系统不一定是可逆系统


针对第(3)小问的积分再进行一定的补充,也许有小伙伴会发出这样的疑问:

如果输入 e(t) 是 sint ,那么经过积分后输出是周期函数 - \cos t\left| {_{ - \infty }^t} \right. ,当 t 取不同时,对应的输出 r(t) 可能是一样的,那不就是输入 e(t) 对应多个 输出 r(t) ,这样不就是不可逆系统吗??

这里大家需要明确,在信号与系统中,我们所处理的是输入信号 e(t) ,相当于是输入 e(t) 和输出 r(t) 之间的关系,即 r(t) = T\left[ {e(t)} \right] ,所以可逆与否主要是看对于不同的输入形式(而不是自变量 t ),它对应的输出是否完全一致。


创作不易,希望小伙伴点赞收藏+关注,后续还会更新【信号与系统(郑君里)】教材的其他习题解析!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值