思想
(1)每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处
的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引
(2)交换第一个索引处和最小值所在的索引处的值
API设计
代码实现
/**
* 选择排序
*/
public class Selection {
/**
* 对数组内的元素进行排序
*
*/
public static void sort(Comparable[] a){
for (int i = 0; i < a.length-1; i++) {
int minIndex=i;
//每一趟遍历找出最小的元素索引值
for(int j=i+1;j<a.length;j++){
if(greater(a[minIndex],a[j])){
minIndex=j;
}
}
exch(a,i,minIndex);
}
}
/**
* 判断v是否大于w
* @param v
* @param w
* @return
*/
private static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/**
* 交换a数组中,索引i和索引j处的值
* @param a
* @param i
* @param j
*/
private static void exch(Comparable[] a,int i,int j){
Comparable temp;
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
@Test
public void test(){
Integer[] a={9,8,7,5,4,3,2,1};
sort(a);
System.out.println(Arrays.toString(a));
}
}
算法复杂度的分析
一、时间复杂度
选择排序使用了双层for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据
交换次数和数据比较次数:
数据交换次数: (N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
数据比较次数:N-1
时间复杂度:N2/2-N/2+(N-1)=N2/2+N/2-1;
根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);