优化计算卸载的深度学习方法在6G物联网中的应用:卫星-无人机服务:
关于6G时代通信相关技术的讨论
论文链接:https://ieeexplore.ieee.org/document/9520341
在6G时代中,如何通过卫星和无人机提供边缘计算和云计算服务,以满足远程地区的物联网设备的需求,替代当前5G蜂窝基站,并满足偏远地区物联网设备应用需求。本文提出了一种基于深度学习的计算卸载策略优化方法,利用长短期记忆(LSTM)模型预测未来的能量收集情况,并根据能量动态和通信条件优化任务的成功率。提出了空中-地面-空中一体化网络(SAGINs)、能量收集和人工智能技术在6G物联网中的重要性
相关内容:
四个前景技术:太赫兹波段的利用、能量收集、边缘计算、机器学习
- 太赫兹波段的利用:通过将使用的频谱从毫米波提高到太赫兹范围,以进一步提高数据速率。
- 能量收集:构建一个以环境能源为动力的可持续通信系统,是偏远地区实现6G网络通信的关键技术之一。
- 边缘计算:通过边缘计算可以补充物联网设备附近的计算和缓存资源,并以接近实时的方式提供服务。边缘服务器还可以帮助执行小型或不太紧急的任务,这可以节省物联网设备的能源。
- 机器学习:通过机器学习可以预测复杂环境下的传输信号和收获过程、可以映射多个网络因素之间的复杂关系,可以帮助运营商减少人为干预,实现自动化管理