# Codeforces Round #709_B. Restore Modulo

本文介绍了RestoreModulo问题的解决方案,通过统计数组中元素差值,利用集合(set)来维护不同的差值。当差值个数超过2时输出-1,若差值唯一或数组长度为1则输出0。对于其他情况,找到正差值并计算模m,从而确定c和m的值。代码示例中展示了如何实现这一算法。
摘要由CSDN通过智能技术生成

B. Restore Modulo

题目链接在此!

题面:

在这里插入图片描述
在这里插入图片描述

中文题意:

给定一个数组,如果里面的数满足ai=(ai-1+c) mod m,且a1=s mod m。如果给定数组能找到这样的c和m就输出,如果不存在则输出-1,输出0代表m可以无限大。

思路:

统计不同的差值个数,想到用set维护。

  1. 若不同差值超过2个则输出-1。
  2. 若不同差值只有1个或者n=1输出0。
  3. 其他情况,c为set中大于零的部分,m为set中两个值的绝对值相加。

代码:

//题意 求经过特定3点的最小生成树
//思路:枚举任何一点作为支撑点 ,特定的3点要相连必须经过共同的一点 ,求这三点到所枚举点的最短路和,取最小值即为答案
#include<iostream>
#include<stdio.h>
#include<string.h>
#include <random>
#include<queue>
#include <map>
#include <vector>
#include <algorithm>
#include <set>

using namespace std;
typedef pair<int, int> P;
typedef long long ll;
const int maxn = 1e5 + 39;
ll a[maxn];
ll b[maxn];
set<ll> s;
bool flag;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int T;
    cin >> T;
    while (T--) {
        s.clear();
        int n;
        ll sum1 = 0;
        ll sum2 = 0;
        ll c;
        ll m = 0;
        cin >> n;
        ll big = 0;
        for (int i = 1; i <= n; i++) {
            cin >> a[i];
            big = big > a[i] ? big : a[i];
        }
        for (int i = 2; i <= n; i++) {
            int temp = a[i] - a[i - 1];
            s.insert(temp);
        }
        if (s.size() == 1 || s.size() == 0) {
        //注意s.size()==0,否则1 1 1会输出-1,实际上应该是0.
            cout << 0 << endl;
            continue;

        } else if (s.size() > 2) {
            cout << -1 << endl;
            continue;
        }
        for (auto it : s) {
            if (it >= 0) {
                c = it;
                sum1++;
            } else
                sum2++;
            m += it >= 0 ? it : -it;
        }
        if (m >= big && sum1 == 1 && sum2 == 1)
            cout << m << " " << c << endl;
        else
            cout << -1 << endl;
    }
}

//OK
在Educational Codeforces Round 146 (Rated for Div. 2)比赛中,有关于一个节点数量为n的问题。根据引用的结论,无论节点数量是多少,都可以将其分成若干个大小为2或3的区间使其错排,从而减少花费。根据引用的推导,我们可以通过组合数和差量来表示剩余的花费。而引用进一步推广了这个结论,可以使得任意长度的一段错排花费代价为边权和的两倍,并且通过贪心算法使得更多的边不被使用。以此来解决与节点数量相关的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Educational Codeforces Round 146 (Rated for Div. 2)(B,E详解)](https://blog.csdn.net/TT6899911/article/details/130044099)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Educational Codeforces Round 83 (Rated for Div. 2) D](https://download.csdn.net/download/weixin_38562130/14878888)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值