题目如图
思路1:将数字n转为字符串,用find(‘8’)函数遍历得到包含数字8的总数sum
经过试验->超时!因find函数本身复杂度为O(str.length)再套一层for(n)循环复杂度就变成O(length*n),最后超时
#include <iostream>
#include<cmath>
using namespace std;
int main(){
long long n;
cin>>n;
int sum=0;
string sd;
for(int i=1;i<=n;i++){
sd=to_string(i);
if(sd.find('8')<sd.length())sum++;
}
cout<<sum;
return 0;
}
思路2:数学分析,简化求解
两种思路:
1 分别找出1,2,3…位数的包含8的个数
一位数:1个 8
二位数:18个 (个位是8=1* 9,十位是8=1* 10,最后需要-88这个重复的)18,28,38,48,58,68,78,88,98, 80,81,82,83,84,85,86,87,89
三位数 (252个个位8=1 * 10* 9 十位8=1 * 10* 9百位=1* 10 * 10最后减去888 ,88*(9个),* 88(9个),8 * 8(9个))
可见这种方法求起来比较费劲,需要考虑重复
2 反向思维 用n减去不包含8的数字个数
一位数 8个
二位数 8* 9个
三位数 8* 9* 9个
…
n位数 8 * 9^(n-1)
例如2018 是四位数,可以将其拆为3部分0-999 1000-1999 2000-2018
0-999 中不含8的个数为8+8* 9+8* 9* 9
1000-1999 :(2-1) * 9 * 9 *9 即pow(9,N-1) //N为2018的位数=4
2000-2018 :可以用递归思想 依次对018 18 8操作
令n1为最高位数字
首次的n1单独计算 2018的n1=2 则1000-1999 部=(n1-1) * pow(9,N-1) //N为2018的位数=4
后面的n1 统一:018的n1=0 则直接->18 n1=1 则sum+=n1 * pow(9,N-1) //N为18的位数=2
8 此时N=1作为递归出口 返回值为8【0,7】
ps:特别注意 n1需要区分2*3种情况,因为首位范围为1-9,其他位数为0-9
第一次的n1 sum+=(n1-1) * pow(9,N-1)
其次:sum+=(n1) * pow(9,N-1)
在这两类的基础上再分三种情况
n1==8 >8 <8
详情见代码
#include <iostream>
#include<cmath>
using namespace std;
long long a[20]={0},sum=0,SUM=0;
void eight(long long n,int N)
{
if(N==1)
{sum+=((n>=8)?n:n+1); //递归出口,在最后一位数n<8时为0->n共n+1个数,>=8时减去8后为n个数
return;}
int n1=n/pow(10,N-1);//n的最高位数字
if(SUM!=0)//SUM==0:对最高位数字单独处理
{
if(n1==8)
{sum+=(n1)*pow(9,N-1);return;}//n1==8则n1
//开头的数字都是带8的可以return
else
{
if(n1>8)
sum+=(n1-1)*pow(9,N-1);
else
sum+=(n1)*pow(9,N-1);
}
}
else
{
if(n1==8)
{sum+=(n1-1)*pow(9,N-1);return;}//n1==8则n1
//开头的数字都是带8的可以return
else
{
if(n1>8)
sum+=(n1-2)*pow(9,N-1);
else
sum+=(n1-1)*pow(9,N-1);
}
}
SUM++;
eight(n-n1*pow(10,N-1),N-1);
return ;
}
int main(){
for(int i=1;i<20;i++) //对数组a[]初始化,代表i位数时不包含8的数字的数量
a[i]=8*pow(9,i-1);
long long n,nn;
cin>>n;
nn=n;
int N=0;
while(n)
{
N++;
n/=10;
}
for(int i=1;i<N;i++)
sum+=a[i];
if(N==1)sum+=((n>=8)?n-1:n) //对于个位数单独处理
else
eight(nn,N);
cout<<nn-sum<<endl;
return 0;
}