从1到n共有多少个包含8的数

题目如图

在这里插入图片描述

思路1:将数字n转为字符串,用find(‘8’)函数遍历得到包含数字8的总数sum

经过试验->超时!因find函数本身复杂度为O(str.length)再套一层for(n)循环复杂度就变成O(length*n),最后超时

#include <iostream>
#include<cmath>
using namespace std;
int main(){
	long long n;
	cin>>n;
	int sum=0;
	string sd;
	for(int i=1;i<=n;i++){
	sd=to_string(i);
	if(sd.find('8')<sd.length())sum++;
	}
	cout<<sum;
    return 0;
}

思路2:数学分析,简化求解

两种思路:

1 分别找出1,2,3…位数的包含8的个数

一位数:1个 8
二位数:18个 (个位是8=1* 9,十位是8=1* 10,最后需要-88这个重复的)18,28,38,48,58,68,78,88,98, 80,81,82,83,84,85,86,87,89
三位数 (252个个位8=1 * 10* 9 十位8=1 * 10* 9百位=1* 10 * 10最后减去888 ,88*(9个),* 88(9个),8 * 8(9个))

可见这种方法求起来比较费劲,需要考虑重复

2 反向思维 用n减去不包含8的数字个数

一位数 8个
二位数 8* 9个
三位数 8* 9* 9个

n位数 8 * 9^(n-1)

例如2018 是四位数,可以将其拆为3部分0-999 1000-1999 2000-2018
0-999 中不含8的个数为8+8* 9+8* 9* 9
1000-1999 :(2-1) * 9 * 9 *9 即pow(9,N-1) //N为2018的位数=4
2000-2018 :可以用递归思想 依次对018 18 8操作
令n1为最高位数字
首次的n1单独计算 2018的n1=2 则1000-1999 部=(n1-1) * pow(9,N-1) //N为2018的位数=4
后面的n1 统一:018的n1=0 则直接->18 n1=1 则sum+=n1 * pow(9,N-1) //N为18的位数=2
8 此时N=1作为递归出口 返回值为8【0,7】

ps:特别注意 n1需要区分2*3种情况,因为首位范围为1-9,其他位数为0-9
第一次的n1 sum+=(n1-1) * pow(9,N-1)
其次:sum+=(n1) * pow(9,N-1)

在这两类的基础上再分三种情况
n1==8 >8 <8
详情见代码

#include <iostream>
#include<cmath>
using namespace std;
long long a[20]={0},sum=0,SUM=0;

void eight(long long n,int N)
    {
     if(N==1)
         {sum+=((n>=8)?n:n+1);            //递归出口,在最后一位数n<8时为0->n共n+1个数,>=8时减去8后为n个数
         return;}

    int n1=n/pow(10,N-1);//n的最高位数字

      if(SUM!=0)//SUM==0:对最高位数字单独处理
      {
          if(n1==8)
          {sum+=(n1)*pow(9,N-1);return;}//n1==8则n1
          //开头的数字都是带8的可以return
            else
          {
              if(n1>8)
              sum+=(n1-1)*pow(9,N-1);
              else
                 sum+=(n1)*pow(9,N-1);
          }
      }
      else
      {
          if(n1==8)
          {sum+=(n1-1)*pow(9,N-1);return;}//n1==8则n1
          //开头的数字都是带8的可以return
          else
          {
              if(n1>8)
              sum+=(n1-2)*pow(9,N-1);
              else
                 sum+=(n1-1)*pow(9,N-1);
          }
      }

      SUM++;
        eight(n-n1*pow(10,N-1),N-1);
    return ;
}

int main(){
    for(int i=1;i<20;i++)  //对数组a[]初始化,代表i位数时不包含8的数字的数量
        a[i]=8*pow(9,i-1);
	long long n,nn;
	cin>>n;
	nn=n;
	int N=0;
	while(n)
    {
        N++;
        n/=10;
    }
    for(int i=1;i<N;i++)
        sum+=a[i];
  if(N==1)sum+=((n>=8)?n-1:n)  //对于个位数单独处理
            else
                 eight(nn,N);
	cout<<nn-sum<<endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值