[Object Detection]DETR - DeFormable - DINO

1. BaseInfo

TitleEnd-to-End Object Detection with Transformers
Adresshttps://arxiv.org/pdf/2005.12872
Journal/TimeECCV2020
AuthorFacebook
Codehttps://github.com/facebookresearch/detr
TitleDeformable DETR: Deformable Transformers for End-to-End Object Detection
Adresshttps://arxiv.org/pdf/2010.04159
Journal/Time2020
Author商汤、中科大、港中文
Codehttps://github.com/fundamentalvision/Deformable-DETR
TitleDINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Adresshttps://arxiv.org/pdf/2203.03605
Journal/TimeICLR 2023
Author港科大、清华
Codehttps://github.com/fundamentalvision/Deformable-DETR

2. Creative Q&A

3. Concrete

3.1. DETR : 端到端网络,小目标检测差

CNN 提取特征,input embedding+positional encoding 操作转换为图像序列。
预测阶段:生成 100 个预测框,利用匈牙利算法做匹配,计算 loss。
测试阶段:在生成的预测框中筛选类别置信度大于 0.7 的。
object queries 是可学习的。只用了最后一个特征图。
在标准的 Transformer 中位置编码只加在 Input 上,这里的位置编码加在 k 和 q 上。
分类 loss 使用 CE;对成功匹配的采用 L1 和 giou。

在这里插入图片描述

3.2. Deformable DETR

  1. 可变形卷积:相比普通卷积多了一个偏移量。
  2. 多尺度策略,只和周围的部分像素做注意力。
  3. Deformable Attention、MSDeformAttention

在这里插入图片描述

3.3. DINO

  1. 收敛快 : 对比去噪训练
  2. 混合查询选择。
  3. Look Forward Twice
    在这里插入图片描述

3.3. DataSets

COCO 2017
COCO

3.4. Eval

AP、AP50、AP75、AP_s、AP_m、AP_l

4. Reference

DETR | 1、算法概述
DETR-CSDN
Deformable-CSDN
Deformable DETR-zhihu
DINO

5. Additional

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值