磁场对载流导线的作用
一、安培定律
方法:微元分割+积分求和
第一个式子表示,电流元2对1的作用力。
注意
:
- 两个电流元之间的作用力不满足牛顿第三定律。
- 但是两个载流闭合导线之间的相互作用力满足牛顿第三定律。
安培力的一般形式:
d
F
⃗
=
I
d
l
⃗
×
B
⃗
d\vec{F}=Id\vec{l}\times\vec{B}
dF=Idl×B
实质:
导线中作定向移动的电子在洛伦兹力的作用下,通过导线内部的自由电子和晶格之间的 作用,使导线在宏观上表现出受到磁力的作用。
二、磁场对载流导线的作用
任意形状的载流导线在外磁场中受到的安培力
F
⃗
=
∫
L
d
F
⃗
=
∫
L
I
d
l
⃗
×
B
⃗
\vec{F}=\int_Ld\vec{F}=\int_LId\vec{l}\times\vec{B}
F=∫LdF=∫LIdl×B
当电流与磁场强度都恒定时,有结论:
均匀磁场中任意载流共面导线所受的磁场力=载有相同电流的直导线所受的磁场力
三、磁场对载流线圈等等作用
推论:
均匀磁场中任意载流共面闭合线圈所受的磁场力的合力等于0。
但是,力矩并不一定等于0。
M
=
B
I
S
s
i
n
θ
M=BISsin\theta
M=BISsinθ
其中,
S
S
S是闭合线圈面积,
θ
\theta
θ是载流线圈的法向与
B
B
B的夹角。
前面我们学习过电流圈的磁矩
P
m
⃗
=
I
S
n
⃗
\vec{P_m}=IS\vec{n}
Pm=ISn
那么,
M
⃗
=
P
m
⃗
×
B
⃗
\vec{M}=\vec{P_m}\times\vec{B}
M=Pm×B
注意:
- 适用于均匀磁场中的任意载流平面线圈。
- 对于N匝线圈: P m ⃗ = N I S n ⃗ \vec{P_m}=NIS\vec{n} Pm=NISn
-
- 当 n ⃗ \vec{n} n与 B ⃗ \vec{B} B平行时, M M M=0,系统区域稳定平衡。
- 当 n ⃗ \vec{n} n与 B ⃗ \vec{B} B垂直时, M M M最大,系统受到最大磁力矩。
- 当 n ⃗ \vec{n} n与 B ⃗ \vec{B} B反向平行时, M M M=0,系统区域处于不稳定平衡。
四、磁力的功
- 载流导线在均匀磁场中运动时磁力做的功
W = F s = B I l s = I Δ Φ m W=Fs=BIls=I\Delta\Phi_m W=Fs=BIls=IΔΦm - 载流线圈受磁力矩M的作用
产生角位移,仍有 W = I Δ Φ m W=I\Delta\Phi_m W=IΔΦm