大学物理电磁学——磁场对载流导线的作用

磁场对载流导线的作用

一、安培定律

方法:微元分割+积分求和

在这里插入图片描述第一个式子表示,电流元2对1的作用力。
注意

  • 两个电流元之间的作用力不满足牛顿第三定律。
  • 但是两个载流闭合导线之间的相互作用力满足牛顿第三定律。

安培力的一般形式:
d F ⃗ = I d l ⃗ × B ⃗ d\vec{F}=Id\vec{l}\times\vec{B} dF =Idl ×B
实质:
导线中作定向移动的电子在洛伦兹力的作用下,通过导线内部的自由电子和晶格之间的 作用,使导线在宏观上表现出受到磁力的作用。

二、磁场对载流导线的作用

任意形状的载流导线在外磁场中受到的安培力
F ⃗ = ∫ L d F ⃗ = ∫ L I d l ⃗ × B ⃗ \vec{F}=\int_Ld\vec{F}=\int_LId\vec{l}\times\vec{B} F =LdF =LIdl ×B
当电流与磁场强度都恒定时,有结论:

均匀磁场中任意载流共面导线所受的磁场力=载有相同电流的直导线所受的磁场力

三、磁场对载流线圈等等作用

推论:

均匀磁场中任意载流共面闭合线圈所受的磁场力的合力等于0。

但是,力矩并不一定等于0。
M = B I S s i n θ M=BISsin\theta M=BISsinθ
其中, S S S是闭合线圈面积, θ \theta θ是载流线圈的法向与 B B B的夹角。
前面我们学习过电流圈的磁矩
P m ⃗ = I S n ⃗ \vec{P_m}=IS\vec{n} Pm =ISn
那么, M ⃗ = P m ⃗ × B ⃗ \vec{M}=\vec{P_m}\times\vec{B} M =Pm ×B
注意:

  1. 适用于均匀磁场中的任意载流平面线圈。
  2. 对于N匝线圈: P m ⃗ = N I S n ⃗ \vec{P_m}=NIS\vec{n} Pm =NISn
    • n ⃗ \vec{n} n B ⃗ \vec{B} B 平行时, M M M=0,系统区域稳定平衡。
    • n ⃗ \vec{n} n B ⃗ \vec{B} B 垂直时, M M M最大,系统受到最大磁力矩。
    • n ⃗ \vec{n} n B ⃗ \vec{B} B 反向平行时, M M M=0,系统区域处于不稳定平衡。

四、磁力的功

  1. 载流导线在均匀磁场中运动时磁力做的功
    W = F s = B I l s = I Δ Φ m W=Fs=BIls=I\Delta\Phi_m W=Fs=BIls=IΔΦm
  2. 载流线圈受磁力矩M的作用
    产生角位移,仍有 W = I Δ Φ m W=I\Delta\Phi_m W=IΔΦm

课堂小结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值