描述
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
做题
力扣的题有点🐕啊,要把结果放在 nums1 上,啊这。
不过因为它是给了递增的数组,是已经排好序的,所以我们就可以直接去合并数组了。
我想了半个小时!?一直想做出时间复杂度为 O(m+n) 的解法,但是我一直都是想着怎么把数组从左到右去排序的。
如果新建一个数组来存放结果的话,确实可以做到时间复杂度为 O(m+n),不过力扣这道题明显就是不想让我们去新建一个数组来存放结果。
我们只需要从右到左(从大到小)地去排序我们的数组,就可以做到时间复杂度为 O(m+n),不需要再绞尽脑汁去想怎么把 nums1 的数存起来。
上代码!
public void merge(int[] nums1, int m, int[] nums2, int n) {
int currentIndex = m + n - 1, nums1Index = m - 1, nums2Index = n - 1;
while (nums1Index >= 0) {
int num1 = nums1[nums1Index--];
while (nums2Index >= 0 && num1 < nums2[nums2Index]) {
nums1[currentIndex--] = nums2[nums2Index--];
}
nums1[currentIndex--] = num1;
}
while (nums2Index >= 0) {
nums1[currentIndex--] = nums2[nums2Index--];
}
}
运行!
运行时间直接击败 100% [偷笑]
最后
转变思维很重要啊,顺着做不了,那就逆着来。
今天就到这里了。
这里是程序员徐小白,【每日算法】是我新开的一个专栏,在这里主要记录我学习算法的日常,也希望我能够坚持每日学习算法,不知道这样的文章风格您是否喜欢,不要吝啬您免费的赞,您的点赞、收藏以及评论都是我下班后坚持更文的动力。