代码随想录算法训练营day29 | 491. 递增子序列,46. 全排列,47. 全排列 II

目录

491. 递增子序列

46. 全排列

47. 全排列 II


491. 递增子序列

难度:medium

类型:回溯,类子集问题

思路:

        因为不能排序,所以不能使用 40. 组合总和 II 的去重方式。使用hashset来对递归树的某一层去重。

代码:

class Solution {
    private List<Integer> path = new ArrayList<>();
    private List<List<Integer>> ans = new ArrayList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        if (nums.length < 2) {
            return ans;
        }
        backtracking(nums, 0);
        return ans;
    } 
    public void backtracking(int[] nums, int startIndex) {
        if (path.size() >= 2) {
            ans.add(new ArrayList<>(path));
        }
        // 因为不能排序,所以不能使用 40. 组合总和 II 的去重方式
        // 使用hashset来对递归树的某一层去重
        HashSet<Integer> set = new HashSet<>();
        for (int i = startIndex; i < nums.length; i++) {
            // 去重
            if (set.contains(nums[i])) {
                continue;
            }
            // 保证单调递增
            if (!path.isEmpty() && nums[i] < path.get(path.size() - 1)) {
                continue;
            }
            set.add(nums[i]);
            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

46. 全排列

难度:medium

类型:回溯,排列

 思路:

46.全排列

       本题的特点:nums不含重复数字,需要写出所有的排列,每个数字使用一次;

        nums不含重复数字:不需要去重操作,下一题则需要去重(47全排列2);

        需要写出所有的排列:没有startIndex参数,因为排列需要考虑不同的顺序,所以每一层递归都是从0开始遍历的。

        每个数字使用一次:使用hashset或者used数组来保证每个数字只使用一次;

// 使用hashset进行全排列
class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    public List<List<Integer>> permute(int[] nums) {
        backtracking(nums);
        return ans;
    }
    public void backtracking(int[] nums) {
        if (path.size() == nums.length) {
            ans.add(new ArrayList<>(path));
            return;
        }

        for (int i = 0; i < nums.length; i++) {
            if (!path.contains(nums[i])) {
                path.add(nums[i]);
                backtracking(nums);
                path.remove(path.size() - 1);
            }
        }
    }
}

// 使用used数组进行全排列
class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    private boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        used = new boolean[nums.length];
        backtracking(nums, used);
        return ans;
    }

    public void backtracking(int[] nums, boolean[] used) {
        if (path.size() == nums.length) {
            ans.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            // 该元素已经使用过
            if (used[i] == true) {
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            backtracking(nums, used);
            used[i] = false;
            path.remove(path.size() - 1);
        }
    }
}
  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

47. 全排列 II

难度:medium

类型:回溯,排列

思路:

        本题特点:排列问题,nums中包含重复数字,每个数字使用一次;

       1.排列问题:没有startIndex参数,因为排列需要考虑不同的顺序,所以每一层递归都是从0开始遍历的。

       2. nums中包含重复数字:

代码随想录:47全排列2

        这道题使用used[i - 1] == false或者used[i - 1] == true来去重都可以,前者是在树层上去重,后者是在树枝上去重。但对used[i - 1]的判断不能省去。必须始终是true或者false的判断。

         树层去重(效率更高):

            // used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
            // used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过

            // 同一树层nums[i-1]使用过,则跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }

47.全排列II1

 

 

        3.每个数字使用一次:

            // 同一树枝,nums[i]没处理,则处理
            if (used[i] == false) {
                used[i] = true;
                path.add(nums[i]);
                backtracking(nums, used);
                used[i] = false;
                path.remove(path.size() - 1);
            }

代码:

class Solution {
    private List<List<Integer>> list = new ArrayList<>();
    private List<Integer> path = new ArrayList<>();
    private boolean[] used;
    public List<List<Integer>> permuteUnique(int[] nums) {
        Arrays.sort(nums);
        used = new boolean[nums.length];
        backtracking(nums, used);
        return list;
    }
    public void backtracking(int[] nums, boolean[] used) {
        if (path.size() == nums.length) {
            list.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            // used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
            // used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过

            // 同一树层nums[i-1]使用过,则跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            // 同一树枝,nums[i]没处理,则处理
            if (used[i] == false) {
                used[i] = true;
                path.add(nums[i]);
                backtracking(nums, used);
                used[i] = false;
                path.remove(path.size() - 1);
            }
        }
    }
}
// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素
  • 时间复杂度: O(n! * n)
  • 空间复杂度: O(n)

 

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值