题目链接:
传送门
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define ll long long
using namespace std;
const int N = 200010;
ll arr[N];
//注意数据范围sum和add要开long long
struct Node {
int l, r;
ll sum, add;
} tr[4 * N];
//更新操作
void pushup(int u) {
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
//延迟标记
void pushdown(int u) {
Node &Root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if(Root.add) {
left.add += Root.add, left.sum += (left.r - left.l + 1) * Root.add;
right.add += Root.add, right.sum += (right.r - right.l + 1) * Root.add;
Root.add = 0;
}
}
//创建线段树
void build(int u,int l,int r) {
if(l == r) tr[u] = {l, r, arr[l], 0};
else {
tr[u].l = l, tr[u].r = r;
int mid = tr[u].l + tr[u].r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
//区间修改值
void modify(int u, int l, int r, ll val) {
if(tr[u].l >= l && tr[u].r <= r) {
tr[u].add += val;
tr[u].sum += (tr[u].r - tr[u].l + 1) * val;
} else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) modify(u << 1, l, r, val);
if(r > mid) modify(u << 1 | 1, l, r, val);
pushup(u);
}
}
//查询区间和
ll query(int u, int l, int r) {
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
ll sum = 0;
if(l <= mid) sum += query(u << 1, l, r);
if(r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}
//注意哪些数据需要写lld
int main() {
int n, q, a, b;
ll c;
char op;
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; i++)
scanf("%lld", &arr[i]);
build(1, 1, n);
while(q--) {
scanf(" %c", &op);
if(op == 'Q') {
scanf("%d%d", &a, &b);
printf("%lld\n", query(1, a, b));
} else {
scanf("%d%d%lld", &a, &b, &c);
modify(1, a, b, c);
}
}
}
这道题是线段树区间修改,区间查询的一个简单应用,关于线段树的知识点详情请见某大佬博客
这道题是sum来存储当前区间的总和,同时add标记即为懒标记(延迟标记),该标记暂时存储着这一区间中的一个操作,但暂时不把该操作下放,等到询问到下面的点时,在把这个操作往下执行,这就是懒标记的一个思路。
然后具体说说这道题的维护,这道题主要时维护区间和,那么首先更新用的pushup就应该写成当父结点等于连个子结点之和。然后pushdown(即对懒标记的处理)写成对子区间加add。对于查询,我们每次都看看当前有没有懒标记,有就往下传,然后往下找子结点,不断地返回总和。而对于修改则每次往下处理知道当前区间为处理区间的子集时,就可以停下了,并处理其懒标记。
在做题时,要小心处理lld的问题。