- 博客(30)
- 收藏
- 关注
原创 autodl私有云使用方法(成员端使用)
复制登陆命令,此处讲解一下,ssh -p 999 root@66.66.66.66,999是端口号,而不是平时ssh常用的22端口,root是登录用户名,需要指定用户名登录,66.66.66.66是服务器ip地址,密码就是登录密码,平台自动生成,如需自己更改,请自行研究。可以进行实例的资源监控,更改镜像、克隆实例(方便多个实验并行,可以修改少量代码进行消融实验)实验完成记得将数据保存到自己电脑上,并自行释放实例,实例释放硬盘空间自然也就释放了。然后创建所需镜像,第一次拉取镜像会比较慢,请耐心等待。
2024-04-24 12:04:47 713 3
原创 autodl私有云使用方法(管理员端)
(ICL智能计算实验室自用)https://private.autodl.com/私有云的网址,注册,获得个人的ID,是否实名根据个人情况选择。团队管理点击红色圈出的团队,方框部分是管理员权限,圆圈是创建者,充值虚拟金额可以间接管理服务器使用时长,添加成员需要成员提供注册的ID。所有主机部分查看私有的服务器所有的机器。
2024-04-24 11:51:13 414
原创 AttributeError: module ‘distributed.protocol.torch‘ has no attribute ‘cuda‘解决办法
出错代码是DEVICE = (‘cuda’ if torch.cuda.is_available() else ‘cpu’)解决办法:import torch。今天跑了个BERT,代码出错。import部分是这样的。
2023-03-27 13:47:00 581
原创 Domain adversarial graph convolutional network for fault diagnosis 论文阅读笔记
然而,现有的基于UDA的方法大多只使用前两种信息,而忽略了数据结构的建模,使得深层网络提取的特征中包含的信息不完整。然后,将得到的图输入到GCN中,将数据结构信息嵌入到节点特征中。为了获得节点特征矩阵X,首先利用CNN(例如LeNet)从输入数据中捕获特征,并且提取的特征映射可以表示为X=CNN(Xmput),其中Ximpur是一个小批量输入矩阵。通过最小化定义的总体目标函数和优化DAGCN的参数,可以获得域不变和区分性特征,从而使用标记源域数据训练的分类器能够正确地对未标记目标域的数据进行分类。
2022-11-07 10:21:27 723 1
原创 学习笔记之模型的剪枝/量化/蒸馏/AutoML
(2)剪枝的方式:删去网络层上的权重的向量/整个神经元/单个像素(数据)。(7)实现原理: 压低权重,根据权重大的数据进行保留,没用的数值权重越来越小,逐渐消失。常用SGD(随机梯度下降)优化器(较温和)。(一个操作的权重升高,其他操作的权重就会降低,知道只剩下一个可选项)蒸馏的原理:先预训练一个大模型,用大模型教小模型(大模型的结果在神经元的级别上作为小模型的先验),使得小模型有大模型的精度,性能又比大模型高。(3)在工业上一般用FP32对模型进行训练(追求精度) ,对推理部分用INT8(提高性能)。
2022-10-24 17:00:38 595
原创 RNN基础知识
也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。这样,所谓的隐藏层的循环操作也就不难理解了,就是每一时刻计算一个隐藏层地值,然后再把该隐藏层地值传入到下一时刻,达到信息传递的目的。这个过程我们可以看到,输入 “time” 的时候,前面“what” 的输出也会对02的输出产生了影响(隐藏层中有一半是黑色的)。V是隐藏层到输出层的权重矩阵。
2022-10-24 14:10:38 782
原创 PP-YOLO论文阅读笔记
PP-YOLO 的目标是实现一个有效性和效率相对平衡的对象检测器,可以直接应用于实际应用场景,而不是提出一种新的检测模型。PP-YOLO主要尝试将现有的各种技巧结合起来,在保证速度几乎不变的情况下,尽量不增加模型参数和触发器的数量,以达到尽可能提高检测器精度的目的。通过结合多种技巧,PP-YOLO可以在有效性(45.2%mAP)和效率(72.9FPS)之间实现更好的平衡,超过现有的最先进探测器,如EfficientDet和 YOLOv4。对于数据扩充,直接使用了最基本的MixUp。
2022-10-24 13:26:44 1608 1
原创 论文阅读DefectNet: Toward Fast and Effective Defect Detection缺陷网:走向快速有效的缺陷检测
DefectNet 只使用一个网络,通过共享卷积参数和卷积运算,可以在同一网络中同时完成缺陷图像分类和缺陷检测,也可以同时完成两个不同复杂度网络的训练,节省时间,提高检测效率。此外,它充分利用了输入图像大尺寸的优点,有效地提高了缺陷图像的分类能力。大多数基于CNN的缺陷检测方法难以利用无缺陷图像,作者提出的方法充分有效地利用了无缺陷图像,避免了数据资源的浪费,并且针对三种不同的学习任务,即二分类网络和目标定位和分类网络,作者提出了一种策略,可以平衡这两种复杂度不同的网络。因此,作者将f (w)设置为。
2022-10-24 12:13:34 1176 1
原创 anaconda报错Collecting package metadata (current_repodata.json): failed
解决Collecting package metadata (current_repodata.json): failedProxyError: Conda cannot proceed due to an error in your proxy configuration.Check for typos and other configuration errors in any '.netrc' file in your home directory,
2022-10-08 18:15:35 1364
原创 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.解决办法
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.解决办法
2022-08-02 20:26:46 246
原创 train.py: error: the following arguments are required: --dataset的解决办法
train.py: error: the following arguments are required: --dataset的解决办法
2022-08-02 19:46:05 5049 3
原创 CNN基础知识
本篇文章参考其他文章、博客、定义等参考,自己总结的,如有侵权,请联系删除。CNN全称 卷积神经网络(Convolutional Neural Networks, CNN)卷积神经网络是通过神经网络反向传播自动学习的手段,来得到各种有用的卷积核的过程。卷积神经网络通过卷积和池化操作,自动学习图像在各个层次上的特征,这符合我们理解图像的常识。人在认知图像时是分层抽象的,首先理解的是颜色和亮度,然后是边缘、角点、直线等局部细节特征,接下来是纹理、几何形状等更复杂的信息和结构,最后形成整个物体的概念。典型的
2022-05-19 10:58:48 3352
原创 navicat连接云服务器的mysql数据库的坑
mysql连接云服务器 navicat11.0.9企业版上图全填写mysql的信息,下图SSH填写云服务器的信息,云服务器的IP以及登录密码注意端口号!如果报这种错误SSH expected key exchange group packet from server或者是SSH server unexpectedly closed network connection查询云服务器安全组,是否开放相应的端口,如果开放了,试一下更新navicat到新版本基本两种错误就可以解除~亲测nav
2022-03-22 22:08:28 1921 2
原创 mysql数据转到neo4j的一些操作
打开navicat,连接mysql本地数据库服务器,对于所要的数据库右键,运行.sql文件即可,如果是拷贝的备份文件,在备份那右键导入就行,导出的时候,可以选择csv格式的文件,可能会出现中文乱码,此时用记事本打开,转存CSV,用urf8格式,如果不行,用ANSI编码格式转存,此时用Excel打开CSV就不乱码了。因为尝试多次mysql导出到upload文件夹权限更改失败,因数据不多,故采用手动导出方式。然后将CSV文件放到neo4j安装目录的的import文件夹下,执行cypher语句即可。读者可以
2022-02-22 20:34:20 1349
原创 阿里云服务器部署neo4j图数据库
一、相关配置信息服务器采用阿里云服务器,ECS实例2核2G,性能突发型,新注册用户,百十来块用一年镜像是ubuntu_20_04_x64,40G系统盘,记得改名改密码什么的电脑端win10,软件是xftp(传文件),secureCRT/PUTTY(对服务器进行指令操作)自行下载,参考的激活码通过云服务器公网IP地址以及账户密码进行连接配置完成进行第二步二、linux下安装JDK参考这篇Ubuntu20.04安装JDK如果不熟悉linux可以在官网下载linux系统的JDK安装包然后通过xf
2022-02-05 11:06:23 4039
原创 操作系统重点第三章 进程管理整理总结
第三章 进程管理1.1进程的概念1.1.1为什么要引入进程程序并发执行具有如下特征间断性失去封闭性不可再现性程序的并发可以总结为:一组在逻辑上相互独立的程序或程序段在执行过程中,其执行时间在客观上相互重叠,即是一个程序段的执行尚未结束,领一个程序段的执行已经开始的这种执行方式。由于程序并发执行,可能会造成结果的不可再现性,所以用“程序”这一概念无法描述程序的并发执行,所以必须引入新的概念——进程来描述程序的并发执行并要对进程进行必要的管理,以保证进程在并发执行时结果可再现。1.1.2进程的
2022-01-23 15:55:51 774
原创 计算机系统结构作业
计算机系统结构作业有一个计算机系统可按功能划分为四级,各级的指令都不同,每一级的指令都比下一级的指令在效能上强M倍,即第i级的一条指令能完成第i-1级的M条指令的计算量。现若需第i级的N条指令解释第i+1级得一条指令,而有一段第1级的程序需要运行K秒,问在第2,3和4级上的一段等效程序各需要运行多长时间?称可用向量方式求解部分所花费的时间占总的时间的百分比为可向量化百分比。如果某一计算任务用向量化方式求解比用标量方式求解要快20倍,请画出加速比与可向量化百分比之间的关系曲线。将某一执行部件
2021-06-28 10:28:27 1857
原创 计算机系统结构每章重点及知识点补充
计算机系统结构每章重点及知识点补充第一章 计算机系统结构的基本概念(1) 计算机系统结构的定义及研究对象(2) 计算机系统的层次结构(3) 评价计算机指令执行速度的经典方法(4) 透明性、系列机、兼容性、MIPS, FLOPS, CPI/IPC, VLSI等概念(5) Amdahl定理与CPU性能公式(6) Flynn分类法计算机系统的层次结构第6级 专用应用语言机器 特定应用用户 (使用特定应用语言)(经应用程序翻译成高级语言)第5级 通用高级语言机器 高级语言程序员
2021-06-28 10:27:42 481
原创 thinkpython2考试周吐血整理(第九章后半部分到第十二章)
第九章9.7这个问题基于一个谜语,这个谜语在广播节目 Car Talk 上面播放过:给我一个有三个连续双字母的单词。我会给你一对基本符合的单词,但并不符合。例如,committee 这个单词,C O M M I T E。如果不是有单独的一个 i 在里面,就基本完美了,或者Mississippi 这个词:M I S I S I P I。如果把这些个 i 都去掉就好了。但有一个词正好是三个重叠字母,而且据我所知这个词可能是唯一一个这样的词。当然有有可能这种单词有五百多个呢,但我只能想到一个。是哪个词
2021-06-27 18:26:04 2230
原创 thinkPython2考试周吐血整理(第一章到第九章)
第二章球体体积是三分之四倍的圆周率乘以半径立方,求半径为5的球体体积。假如一本书的封面标价是24.95美元,书店打六折。第一本运费花费3美元,后续每增加一本的运费是75美分。问买60本一共得花多少钱呢?我早上六点五十二分出门离家,以8:15的节奏跑了一英里,又以7:12的节奏跑了三英 里,然后又是8:15的节奏跑一英里,回到家吃饭是几点?(一开始看到题目,有点难懂8:15的意思,就去网上看别人做的,在这里就直接粘贴上叭,题目本身意义不大)第三章3.14 练习练习1写一个名叫right_jus
2021-06-27 18:19:38 3295
原创 操作系统之进程管理相关总结
第三章 进程管理1.1进程的概念1.1.1为什么要引入进程程序并发执行具有如下特征间断性失去封闭性不可再现性程序的并发可以总结为:一组在逻辑上相互独立的程序或程序段在执行过程中,其执行时间在客观上相互重叠,即是一个程序段的执行尚未结束,领一个程序段的执行已经开始的这种执行方式。由于程序并发执行,可能会造成结果的不可再现性,所以用“程序”这一概念无法描述程序的并发执行,所以必须引入新的概念——进程来描述程序的并发执行并要对进程进行必要的管理,以保证进程在并发执行时结果可再现。1.1.2进程的
2020-05-30 16:25:09 621
转载 Linux系统指令全集(全部是搬运的,如有侵权请告知我让我删除!!!)
Linux系统指令全集(全部是搬运的,如有侵权请告知我让我删除!!!)系统信息arch 显示机器的处理器架构uname -m 显示机器的处理器架构uname -r 显示正在使用的内核版本dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)hdparm -i /dev/hda 罗列一个磁盘的架构特性hdparm -tT /dev/sda 在磁盘上执行测试性读取操...
2020-05-30 16:22:38 288
原创 分区存储管理中有哪些常用的分配策略?试比较它们的优缺点。
分区存储管理中有哪些常用的分配策略?试比较它们的优缺点。分为两大类,连续分配管理方式和非连续分配管理方式(下次更新后半部分)一、 连续分配管理方式1、 单一连续分配方式单一连续分配方式将内存空间分为系统区和用户区。内存中永远只有一道程序。无需内存保护。适用于单用户、单任务的操作系统。优点:实现简单、无外部碎片,可以采用覆盖基础进行扩充内存。缺点:不适用于内存中同时有多道程序的现代...
2020-04-19 22:42:06 19171
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人