问题 D: algorithm-沙子的质量
时间限制 : 1.000 sec 内存限制 : 128 MB
题目描述
设有N堆沙子排成一排,其编号为1,2,3,…,N(N< =300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为1 3 5 2我们可以先合并1、2堆,代价为4,得到4 5 2又合并1,2堆,代价为9,得到9 2,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。
输入
第一行一个数N表示沙子的堆数N。 第二行N个数,表示每堆沙子的质量。 a[i]< =1000。
输出
合并的最小代价。
样例输入
4
1 3 5 2
样例输出
22
#include<iostream>
using namespace std;
int dp[310][310];
int a[310];
int n;
int add(int* a, int i, int j)
{
int sum = 0;
for (i; i - 1 < j; i++)
{
sum += a[i - 1];
}
return sum;
}
int main()
{
cin >> n;
for (int i = 0; i < n + 1; i++)
{
for (int j = 0; j < n + 1; j++)
{
dp[i][j] = 0xffffff; //初始化
}
}
int* a = NULL;
a = new int[n];
for (int i = 0; i < n; i++)
{
cin >> a[i]; //初始化
}
for (int i = 1; i <= n; i++)
{
dp[i][i] = 0;
}
for (int L = 2; L <= n; L++)//算法与矩阵相乘类似
{
for (int i = 1; i <= n; i++)
{
int j = i + L - 1;
if (j > n)
break;
for (int k = i; k < j; k++)
{
int min = dp[i][j];
int temp = dp[i][k] + dp[k + 1][j] + add(a, i, j);//和矩阵相乘的递归式区别
//在于将递归定义中的+Pi-1*Pk*Pj替换为第i个数到第j个数的加和
if (temp < min)
{
dp[i][j] = temp;
min = temp;
}
}
}
}
cout << dp[1][n];
return 0;
}
题目的解法类似于矩阵相乘,数的连加是完全加括号的,通过划定一个范围dp[i][j]表示沙堆i到j的最优合并情况,最终我们所需要的结果是dp[1][n]。
递归定义
d
p
[
i
]
[
j
]
=
{
0
,
i
=
j
m
i
n
i
≤
k
<
j
(
d
p
[
i
]
[
k
]
+
d
p
[
k
+
1
]
[
j
]
+
∑
n
=
i
j
a
[
n
]
)
,
i
<
j
dp[i][j]= \begin{cases} 0, & \text {i $=$ j} \\ min_{i≤k<j}( dp[i][k]+ dp[k+1][j]+ \sum_{n=i}^j {a[n]}), & \text{i $<$ j} \end{cases}
dp[i][j]={0,mini≤k<j(dp[i][k]+dp[k+1][j]+∑n=ija[n]),i = ji < j
递归矩阵
j
i
1
2
3
4
1
0
4
13
22
2
0
0
8
17
3
0
0
0
7
4
0
0
0
0
\begin{array}{c|lcr} \quad \quad j\\i & \text{1} & \text{2} & \text{3} & \text{4}\\ \hline 1 & 0 & 4 & 13 & 22\\ 2 & 0 & 0 & 8 & 17\\ 3 & 0 & 0 & 0 & 7\\ 4 & 0 & 0 & 0 & 0\\ \end{array}
ji123410000240003138004221770