算法导论作业——沙子的质量

问题 D: algorithm-沙子的质量

时间限制 : 1.000 sec 内存限制 : 128 MB

题目描述

设有N堆沙子排成一排,其编号为1,2,3,…,N(N< =300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为1 3 5 2我们可以先合并1、2堆,代价为4,得到4 5 2又合并1,2堆,代价为9,得到9 2,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。

输入

第一行一个数N表示沙子的堆数N。 第二行N个数,表示每堆沙子的质量。 a[i]< =1000。
输出
合并的最小代价。

样例输入

4
1 3 5 2

样例输出

22

#include<iostream>
using namespace std;
int dp[310][310];
int a[310];
int n;
int add(int* a, int i, int j)
{
	int sum = 0;
	for (i; i - 1 < j; i++)
	{
		sum += a[i - 1];
	}
	return sum;
}
int main()
{
	cin >> n;
	for (int i = 0; i < n + 1; i++)
	{
		for (int j = 0; j < n + 1; j++)
		{
			dp[i][j] = 0xffffff;   //初始化
		}
	}
	int* a = NULL;
	a = new int[n];
	for (int i = 0; i < n; i++)
	{
		cin >> a[i];               //初始化
	}
	for (int i = 1; i <= n; i++)
	{
		dp[i][i] = 0;
	}
	for (int L = 2; L <= n; L++)//算法与矩阵相乘类似
	{
		for (int i = 1; i <= n; i++)
		{
			int j = i + L - 1;
			if (j > n)
				break;
			for (int k = i; k < j; k++)
			{
				int min = dp[i][j];
				int temp = dp[i][k] + dp[k + 1][j] + add(a, i, j);//和矩阵相乘的递归式区别
				//在于将递归定义中的+Pi-1*Pk*Pj替换为第i个数到第j个数的加和
				if (temp < min)
				{
					dp[i][j] = temp;
					min = temp;
				}
			}
		}
	}
	cout << dp[1][n];
	return 0;
}

题目的解法类似于矩阵相乘,数的连加是完全加括号的,通过划定一个范围dp[i][j]表示沙堆i到j的最优合并情况,最终我们所需要的结果是dp[1][n]。

递归定义
d p [ i ] [ j ] = { 0 , i  =  j m i n i ≤ k < j ( d p [ i ] [ k ] + d p [ k + 1 ] [ j ] + ∑ n = i j a [ n ] ) , i  <  j dp[i][j]= \begin{cases} 0, & \text {i $=$ j} \\ min_{i≤k<j}( dp[i][k]+ dp[k+1][j]+ \sum_{n=i}^j {a[n]}), & \text{i $<$ j} \end{cases} dp[i][j]={0,minik<j(dp[i][k]+dp[k+1][j]+n=ija[n]),= j< j

递归矩阵
j i 1 2 3 4 1 0 4 13 22 2 0 0 8 17 3 0 0 0 7 4 0 0 0 0 \begin{array}{c|lcr} \quad \quad j\\i & \text{1} & \text{2} & \text{3} & \text{4}\\ \hline 1 & 0 & 4 & 13 & 22\\ 2 & 0 & 0 & 8 & 17\\ 3 & 0 & 0 & 0 & 7\\ 4 & 0 & 0 & 0 & 0\\ \end{array} ji123410000240003138004221770

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值