一个人的朝圣 — LeetCode打卡第30天
知识总结
今天用回溯算法解决了三道Hard题目, 确实题目比较复杂, 需要考虑的事情也很多。
一个思路:如果只需要返回一种结果, 那么递归函数返回boolean, 否则返回void
Leetcode 332. 重新安排行程
题目说明
给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
代码说明
- 需要自己写一个排序的规则。
Collections.sort(list, (a.b) -> a.get(1).compareTo(b.get(1)); 根据List第二个元素的字母顺序升序排列
o1 - o2 升序
o2 - o1 降序
-
只需要返回一条线路,所以递归函数返回boolean.
-
判断条件及线路的最后一站 == 机票中的七点钟
tickets.get(i).get(0).equals(path.getLast())
- used[] 数组来判断机票是否已经使用
class Solution {
private List<String> res = new ArrayList<>();
private LinkedList<String> path = new LinkedList<>();
private boolean[] used;
public List<String> findItinerary(List<List<String>> tickets) {
used = new boolean[tickets.size()];
Collections.sort(tickets, (a, b) -> a.get(1).compareTo(b.get(1)));
path.add("JFK");
backtrack(tickets);
return res;
}
private boolean backtrack(List<List<String>> tickets){
if(path.size() == tickets.size() + 1){
res = new ArrayList<>(path);
return true;
}
for(int i = 0; i < tickets.size(); i++){
if(!used[i] && tickets.get(i).get(0).equals(path.getLast())){
used[i] = true;
path.add(tickets.get(i).get(1));
if(backtrack(tickets)){
return true;
}
used[i] = false;
path.removeLast();
}
}
return false;
}
}
Leetcode 51. N 皇后
题目说明
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
代码说明
代码量还是很足的
- 写一个判断合理性的方法
private boolean isValid(int row, int col, char[][] chessBoard)
-
写一个将board转换成List<String> 的方法
-
for循环在横向遍历, row的变化层层递归纵向遍历。直到row == n 终止退出递归
class Solution {
public char[][] chessBoard;
public List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {
chessBoard = new char[n][n];
for(char[] c : chessBoard){
Arrays.fill(c, '.');
}
backtrack(n, 0, chessBoard);
return res;
}
private void backtrack(int n, int row, char[][] chessBoard){
if(row == n){
res.add(array2List(chessBoard));
return;
}
for(int i = 0; i < n; i++){
if(isValid(row, i, chessBoard)){
chessBoard[row][i] = 'Q';
backtrack(n, row+1, chessBoard);
chessBoard[row][i] = '.';
}
}
}
private List<String> array2List(char[][] chessBoard){
// convert char[][] board to <List<String>
ArrayList<String> ans = new ArrayList<>();
for(int i = 0; i<chessBoard.length; i++){
String str = new String(chessBoard[i]);
ans.add(str);
}
return ans;
}
private boolean isValid(int row, int col, char[][] chessBoard){
// check columns
for(int i = 0; i<row; i++){
if(chessBoard[i][col] == 'Q'){
return false;
}
}
// check 45 degree
for(int i = row-1, j = col-1; i>=0 && j>= 0; i--, j--){
if(chessBoard[i][j] == 'Q'){
return false;
}
}
// check 135 degree
for(int i = row-1, j = col+1; i>=0 && j<chessBoard.length; i--, j++){
if(chessBoard[i][j] == 'Q'){
return false;
}
}
return true;
}
}
Leetcode 37. 解数独
题目说明
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
代码说明
- 二维递归, 两个for循环遍历每个空格,然后再依次尝试1到9的数, 看是否满足条件,如果满足就继续深入寻找下一个
class Solution {
public void solveSudoku(char[][] board) {
backtrack(board);
}
public boolean backtrack(char[][] board){
for(int i = 0; i < board.length; i++){
for(int j = 0; j< board[0].length; j++){
if(board[i][j] == '.'){
for(char k = '1'; k<= '9'; k++){
if(isValid(i, j, k, board)){
board[i][j] = k;
boolean result = backtrack(board);
if(result){
return true;
}
board[i][j] = '.';
}
}
return false;
}
}
}
return true;
}
public boolean isValid(int row, int col, char value, char[][] board){
// row
int len = board.length;
for(int i = 0; i< len; i++){
if(i != col && board[row][i] == value){
return false;
}
}
//col
for(int i = 0; i< len; i++){
if(i!= row && board[i][col] == value){
return false;
}
}
//squre
int sq1 = row /3, sq2 = col/3;
for(int i = sq1*3; i < sq1*3+3; i++){
for(int j = sq2 * 3; j < sq2*3 + 3; j++){
if(i!= row && j!=col && board[i][j] == value){
return false;
}
}
}
return true;
}
}