量化交易 米筐 使用Alphalens因子分析

本文介绍了如何利用Python的Alphalens工具进行因子分析,包括收益率分析、信息IC分析和换手率分析。通过准备因子数据、收盘价数据,使用Alphalens.utils.get_clean_factor_and_forward_returns生成所需结构,并对因子进行IC分析,以评估因子的有效性。
摘要由CSDN通过智能技术生成

4、因子分析工具-Alphalens

官网说明书

  • 收益率分析 Returns Analysis
  • 信息IC分析 Information Coefficient Analysis
  • 换手率分析 Turnover Analysis
  • 分组分析 Grouped Analysis
4.1 alphalens的数据结构

处理之前需要 准备因子数据、价格数据、行业分组数据

  • alphalens.util

    alphalens.utils.get_clean_factor_and_forward_returns(factor, prices, groupby=None, binning_by_group=False, quantiles=5, bins=None, periods=(1, 5, 10), filter_zscore=20, groupby_labels=None, max_loss=0.35)
    
    • 使用

使用Alphalens进行因子IC分析

  • 准备函数所需要的数据个数
  • 因子数据:MultiIndex series
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廷益--飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值