Bert模型的input_ids和attention_mask

获取步骤

input_idsattention_mask是通过以下步骤获得的:

  1. 分词(Tokenization)

    • 使用BERT模型提供的分词器(tokenizer)对原始文本进行分词。BERT的分词器通常是基于WordPiece算法,它能够将文本分割成更小的单元,称为子词(subwords)。
    • 分词器还会添加特殊标记,如[CLS](分类)标记在序列的开始,以及[SEP](分隔)标记在序列的结束和两个句子之间(如果是句子对任务)。
  2. 转换为ID

    • 分词后得到的是标记(tokens)序列,接下来需要将这些标记转换为对应的ID。这些ID是BERT词汇表中的索引,词汇表包含了所有可能的标记。
    • 这一步是通过查找词汇表来完成的,每个标记都被替换为其对应的ID。
  3. 创建input_ids

    • input_ids是一个整数列表,包含了输入序列中每个标记的ID。
  4. 创建attention_mask

    • attention_mask也是一个整数列表,用于指示哪些位置是实际的标记,哪些是填充的。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只天蝎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值