剑指offer-Day4
时间不负有心人,星光不问赶路人
剑指 Offer 04. 二维数组中的查找
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5
,返回 true
。
给定 target = 20
,返回 false
。
限制:
0 <= n <= 1000
0 <= m <= 1000
解题思路:
若使用暴力法遍历矩阵
matrix
,则时间复杂度为 O(NM)O(N**M) 。暴力法未利用矩阵 “从上到下递增、从左到右递增” 的特点,显然不是最优解法。
如下图所示,我们将矩阵逆时针旋转 45° ,并将其转化为图形式,发现其类似于 二叉搜索树 ,即对于每个元素,其左分支元素更小、右分支元素更大。因此,通过从 “根节点” 开始搜索,遇到比 target 大的元素就向左,反之向右,即可找到目标值 target 。
“根节点” 对应的是矩阵的 “左下角” 和 “右上角” 元素,本文称之为 标志数 ,以 matrix 中的 左下角元素 为标志数 flag ,则有:
- 若 flag > target ,则 target 一定在 flag 所在 行的上方 ,即 flag 所在行可被消去。
- 若 flag < target ,则 target 一定在 flag 所在 列的右方 ,即 flag 所在列可被消去。
算法流程:
从矩阵 matrix 左下角元素(索引设为 (i, j) )开始遍历,并与目标值对比:
-
当 matrix(i)(j) > target 时,执行 i-- ,即消去第 i 行元素;
-
当 matrix(i)(j) < target 时,执行 j++ ,即消去第 j 列元素;
-
当 matrix(i)(j) = target 时,返回 truetrue ,代表找到目标值。
若行索引或列索引越界,则代表矩阵中无目标值,返回 false。
代码:
class Solution {
public:
bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
int i = matrix.size()-1,j=0;
while(i>=0&&j<matrix[0].size()){
if(matrix[i][j]>target)
i--;
else if(matrix[i][j]<target)
j++;
else return true;
}
return false;
}
};