- 博客(2)
- 收藏
- 关注
原创 一个大球表面覆盖很多互相不重叠的半球体建模公式
则有: [ x = R \sin(\theta) \cos(\phi) \ y = R \sin(\theta) \sin(\phi) \ z = R \cos(\theta) ] 为了在球面上均匀分布点,我们可以让θ服从[0, π]上的均匀分布,φ服从[0, 2π]上的均匀分布。否则,需要重新生成一个新的点。为了确保这些半球体不会重叠,我们需要检查新生成的点是否与已有的点距离足够远(至少大于2r)。要在一个大球表面覆盖很多互相不重叠的半球体,我们可以使用一种称为“随机点分布”的方法来实现。
2024-09-07 21:17:52 247
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人