1991-2023是否重污染行业、重污染企业(附原始数据,处理代码,最终结果)

数据名称:1991-2023是否重污染行业、重污染企业
划分标准:中国证券监督委
员会2012年修订的《上市公司行业分类指引》、环境保护部2008年制定的《上市公
司环保核查行业分类管理名录》(环办函2008]373号)以及《上市公司环境信息披
露指南》(环办函[2010]78号),主要包括煤炭、采矿、纺织、制革、造纸、石化
、制药、化工、冶金、火电等16个重污染行业.
行业代码:B06-B09,C17
,C19,C22,C25-C28,C30-C33,D44

重污染企业
=1,反之=0
部分数据截取:


内含文件:

各年度样本量:


参考文献:


[1]倪娟,孔令文.环境信息披露、银行信贷决策与债务融资成本——来自我国沪深两
市A股重污染行业上市公司的经验证据[J].经济评论,2016(01):147-1
56+160.


内含两个版本:未剔除和已剔除ST、PT和金融业版本
注意:已
剔除版本中证券简称仍存在ST或者PT属于正常现象,因为简称来源于2023年截面数
据,(如2023年为ST,2010-2022的简称都有可能有ST前缀,但实际2
010-2022年并不是ST),本人剔除时采用“交易状态”进行剔除,所以确保可以
剔除每一年的ST和PT,证券简称的前缀并不影响。
   

下载链接:https://download.csdn.net/download/weixin_45892228/89105526

点击下载:1991-2023是否重污染行业、重污染企业(附原始数据,处理代码,最终结果)

### 回答1: 加性均匀噪声污染图像的 python 代码如下: ``` import numpy as np import cv2 # 读入图像 image = cv2.imread('image.jpg') # 设置噪声强度为 60 noise_intensity = 60 # 生成 0 到 255 之间的噪声 noise = np.random.uniform(low=0, high=255, size=image.shape) # 将噪声与图像相加,得到加性均匀噪声污染的图像 noisy_image = image + noise_intensity * noise # 将像素值限制在 0 到 255 之间 noisy_image = np.clip(noisy_image, 0, 255) # 保存加性均匀噪声污染的图像 cv2.imwrite('noisy_image.jpg', noisy_image) ``` 在上面的代码中,首先使用 cv2 库读入图像,然后使用 numpy 库生成 0 到 255 之间的噪声,并将噪声与图像相加,得到加性均匀噪声污染的图像。最后使用 numpy 库的 clip 函数将像素值限制在 0 到 255 之间,并使用 cv2 库保存加性均匀噪声污染的图像。 请注意,上述代码仅演示了如何污染图像,实际使用时可能需要根据需要进行更多的处理。 ### 回答2: 加性均匀噪声是一种常见的图像噪声类型,它是由于图像信号受到外部干扰或传感器的误差引起的。下面是一个使用Python生成加性均匀噪声污染图像的代码示例: ```python import numpy as np import cv2 def add_uniform_noise(image, intensity): # 获取图像尺寸和通道数 height, width = image.shape[:2] channels = len(image.shape) # 生成与原图像相同尺寸的加性均匀噪声 noise = np.random.uniform(-intensity, intensity, (height, width, channels)) # 将噪声添加到原图像上 noisy_image = image + noise # 将超过像素值范围的值截断为最大值或最小值 noisy_image = np.clip(noisy_image, 0, 255) # 将图像转换为8位整型 noisy_image = noisy_image.astype(np.uint8) return noisy_image # 读取原始图像 image = cv2.imread('original_image.jpg') # 设置噪声强度(可以根据需要进行调整) intensity = 20 # 添加加性均匀噪声 noisy_image = add_uniform_noise(image, intensity) # 显示原始图像和噪声图像 cv2.imshow('Original Image', image) cv2.imshow('Noisy Image', noisy_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 对于加性均匀噪声,我们使用`numpy.random.uniform`函数生成均匀分布的随机数作为噪声,并将其与原图像相加得到噪声污染图像。然后通过`numpy.clip`函数将超过像素值范围的值截断为最大值或最小值。最后,我们将图像转换为8位整型并显示原始图像和噪声图像。 ### 回答3: 加性均匀噪声是指在图像中添加对每个像素都相同的随机噪声。在Python中,可以使用NumPy库来生成随机噪声,并将其添加到图像中。以下是一个实现的示例代码: ```python import cv2 import numpy as np def add_uniform_noise(image, intensity): # 指定均匀噪声的幅度 noise_range = intensity # 生成与原始图像相同大小的均匀噪声 noise = np.random.uniform(-noise_range, noise_range, image.shape) # 将噪声添加到图像中 noisy_image = image + noise # 将像素值限制在0-255的范围内 noisy_image = np.clip(noisy_image, 0, 255) # 转换图像的数据类型为无符号8位整数(0-255) noisy_image = noisy_image.astype(np.uint8) return noisy_image # 读取图像 image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE) # 添加加性均匀噪声,并指定噪声的幅度为50 noisy_image = add_uniform_noise(image, 50) # 显示原始图像和加噪后的图像 cv2.imshow('Original Image', image) cv2.imshow('Noisy Image', noisy_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述代码首先定义了一个`add_uniform_noise`函数,用于添加加性均匀噪声到图像中。函数的输入参数为原始图像和噪声的强度。函数内部,使用NumPy库生成均匀分布的随机噪声,并将其添加到原始图像中。然后,使用`np.clip`函数将图像像素的值限制在0-255的范围内,并使用`astype`函数将数据类型转换为无符号8位整数。最后,通过OpenCV库的`imshow`函数显示原始图像和加噪后的图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生活家小毛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值