Floyd打印最短路径及选址问题

前言:在求任意两点间的最短路问题中,图一般较为稠密,使用Floyd算法可以在O(N ^ 3)的时间实现。当然也可以把每个点作为起点,求解N次单源最短路径问题,但较为复杂。这里介绍Floyd算法以及使用Floyd算法打印路径和解决选址问题

算法分析

假设用d[k, i, j]表示“经过若干编号不超过k的结点”从i 到 j的最短路长度,这个问题可以划分为两个子问题,经过编号不超过 k - 1 的结点从i到j或者从i 先到k ,再到j,所以有:
d[k, i, j] = min(d[k - 1, i, j], d[k - 1, i, k] + d[k - 1, k, j])

因为一般解决稠密图,所以使用邻接矩阵。

Floyd算法的本质是动态规划,k表示我们所划分的阶段,所以在循环的最外层,但我们写的时候已经将其优化,像背包问题等动态规划中那样,使用“滚动数组”优化。

所以才有: d[i][j] = min(d[i][j] , d[i][k] + d[k][j]);

Floyd裸模板

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数n,m,k

接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

输出格式

共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

数据范围

1≤n≤200,
1 ≤ k ≤ n2
1 ≤ m ≤20000

图中涉及边长绝对值均不超过10000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, q;
int d[N][N];
void flody()
{
   
    for(int k = 1; k <= n; k ++ )
        for(int i = 1; i <= n; i ++ )
            for(int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j] , d[i][k] + d[k][j]);
}
int main()
{
   
    cin >> n >> m >> q;
    
    for(int i = 1; i <= n; i ++ )
        for(int j = 1; j <= n; j ++ )
            if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值