⑦排序算法
排序算法的介绍
排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。
排序的分类:
- 内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序。- 外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储进行
排序。
常见的排序算法分类(见下图):
算法的时间复杂度
度量一个程序(算法)执行时间的两种方法
事后统计的方法
1)这种方法可行,但是有两个问题:
一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。2)事前估算的方法:
通过分析某个算法的时间复杂度来判断哪个算法更优.。
算法的空间复杂度简介
基本介绍:
1)类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
2)空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
3)在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.
冒泡排序
基本介绍
冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。
因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下 来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行过交换。从而减少不必要的比较。(这里说的优化,可以在冒泡排序写好后,在进行)
代码:
public class BubbleSort {
public static void main(String[] args) {
int [] score = new int[] {1,2,3,4,9,7,4,1};
for(int i=0;i<score.length-1;i++) {
for(int j=0;j<score.length-1-i;j++) {
if(score[j]>score[j+1]) {
int temp = score[j];
score[j]=score[j+1];
score[j+1] = temp;
}
}
}
for(int j = 0;j<score.length;j++) {
System.out.print(score[j]+" ");
}
}
}
选择排序
基本介绍
选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。
选择排序思想:
选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]arr[n-1]中选取最小值,与arr[i-1]交换,…, 第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。
选择排序思路分析图:
代码:
public class SelectSort {
public static void main(String[] args) {
int[] arr = {10,99,55,14,-1,35};
selectSort(arr);
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i]+" ");
}
}
public static void selectSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int minIndex=i;//最小下标
int temp;//交换数据中间变脸
for (int j = i; j < arr.length; j++) {
if (arr[j]<arr[minIndex]) {
minIndex=j;
}
}
temp=arr[i];
arr[i]=arr[minIndex];
arr[minIndex]=temp;
}
}
}
插入排序
基本介绍
插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。
插入排序法思想:
插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。
代码:
public class InsertSort {
public static void main(String[] args) {
int[] arr = {10,99,55,14,-1,35};
insertsort(arr);
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
public static void insertsort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
int key = arr[i];
for (int j = i; j >0; j--) {
if (arr[j]<arr[j-1]) {
int temp=arr[j-1];
arr[j-1]=arr[j];
arr[j]=temp;
}
}
}
}
}
简单插入排序存在的问题
我们看简单的插入排序可能存在的问题.
数组 arr = {2,3,4,5,6,1} 这时需要插入的数 1(最小), 这样的过程是:
{2,3,4,5,6,6}
{2,3,4,5,5,6}
{2,3,4,4,5,6}
{2,3,3,4,5,6}
{2,2,3,4,5,6}
{1,2,3,4,5,6}
结论: 当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响.
希尔排序
基本介绍
希尔排序法介绍
希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。
希尔排序法基本思想
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止
代码:
public class ShellSort {
public static void main(String[] args) {
int[] arr = {10,99,55,14,-1,35};
shellsort(arr);
System.out.println(Arrays.toString(arr));
}
public static void shellsort(int[] arr) {
int gap=arr.length/2;
int temp;
while(gap>0) {
for (int i = gap; i <arr.length; i++) {
//遍历各组中所有的元素(共gap组,每组共元素,步长gap)
for (int j = i-gap; j >=0; j-=gap) {
//如果当前那个元素大于加上步长后的那个元素,说明交换
if (arr[j]>arr[j+gap]) {
temp=arr[j];
arr[j]=arr[j+gap];
arr[j+gap]=temp;
}
}
}
gap=gap/2;
}
}
//位移法
public static void shellsort2(int[] arr) {
int gap=arr.length/2;
while(gap>0) {
//从gap个元素,逐个对其所在的组进行直接插入排序
for (int i = gap; i <arr.length; i++) {
int j =i;
int temp=arr[j];
if (arr[j]<arr[j-gap]) {
while (j-gap>=0&&temp<arr[j-gap]) {
//移动
arr[j]=arr[j-temp];
j-=gap;
}
//当退出while就给temp找到插入的位置
arr[j]=temp;
}
}
gap=gap/2;
}
}
}
快速排序
基本介绍:
快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
快速排序法应用实例:
要求: 对 [-9,78,0,23,-567,70] 进行从小到大的排序,要求使用快速排序法。【测试8w和800w】
说明[验证分析]:
1)如果取消左右递归,结果是 -9 -567 0 23 78 70
2)如果取消右递归,结果是 -567 -9 0 23 78 70
3)如果取消左递归,结果是 -9 -567 0 23 70 78
代码:
public class QuickSort {
public static void main(String[] args) {
int[] arr = {10,99,55,14,-1,35};
quicksort(arr, 0, arr.length-1);
System.out.println(Arrays.toString(arr));
}
public static void quicksort(int[] arr,int left,int right) {
int l=left;//左下标
int r =right;//右下标
int pivot = arr[(l+r)/2];//中值
int temp;//临时变量
//while循环的目的是让比pivot小的值放到左边,比pivot大的放到右边
while (l<r) {
//早pivot的左边一直找,找到大于等于pivot值,才退出
while (arr[l]<pivot) {
l+=1;
}
//早pivot的右边一直找,找到大于等于pivot值,才退出
while (arr[r]>pivot) {
r-=1;
}
//如果l>=r说明pivot的左右两的值,已经按照左边全部是
//小于等于pivot的值,右边全部都是大于等于的值
if (l>=r) {
break;
}
//交换
temp= arr[l];
arr[l]=arr[r];
arr[r]=temp;
//如果交换完后发现arr[l]==pivot这个值,就让r--前移一下
if (arr[l]==pivot) {
r--;
}
//如果交换完,发现这个arr[r]==pivot值,等于l++,后移
if (arr[r]==pivot) {
l++;
}
}
//如果l==r,必须l++,r--,否则出现栈溢出
if (l==r) {
l++;
r--;
}
//向左递归
if (left<r) {
quicksort(arr, left, r);
}
//向右递归
if (right>l) {
quicksort(arr, l, right);
}
}
}
归并排序
基本介绍
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
代码:
//归并排序
public class MergetSort {
public static void main(String[] args) {
int[] arr = {10,99,55,14,-1,35,8,7};
int[] temp = new int[arr.length];
mergeSort(arr, 0, arr.length-1, temp);
System.out.println(Arrays.toString(arr));
}
//分和合的方法
public static void mergeSort(int[] arr,int left,int right,int[] temp) {
if (left<right) {
int mid = (left+right)/2;//中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归分解
mergeSort(arr, mid+1, right, temp);
//每分解一次就合并一次
merge(arr, left, right, mid, temp);
}
}
//合并的方法
/*
* left左边有序序列的初始索引
* right右边有序序列的索引
* mid中间索引
* temp中转数组
* */
public static void merge(int[]arr ,int left,int right,int mid,int[] temp) {
System.out.println("*****");
int i=left;//初始化i,左边有序序列的初始索引
int j=mid+1;//初始化j,右边有序序列的初始索引
int t=0;//指向temp数组的当前索引
//1.先把左右两边的数组按照规则填充到temp结束,直到左右两边的有序序列,有一方处理完毕
while(i<=mid&&j<=right) {
//如果左边的有序序列的当前元素,小于等于右边的有序序列的当前冤死
//将左边的当前元素拷贝到temp中
//然后t++,i++
if (arr[i]<=arr[j]) {
temp[t]=arr[i];
t++;
i++;
}else {//反之,右边小于左边
temp[t]=arr[j];
j++;
t++;
}
}
//2.把剩余数据的所有数组全部填充到temp
while (i<=mid) {//左边的有序序列还有剩余元素,就全部填充到temp中
temp[t]=arr[i];
t++;
i++;
}
while (j<=right) {//右边的有序序列还有剩余元素,就全部填充到temp中
temp[t]=arr[j];
t++;
j++;
}
//3.吧temp数组拷贝到arr
t=0;
int tempLeft=left;
while (tempLeft<=right) {
//第一次合并templeft=0,right=1
//第二次合并templeft=2,right=3
//第三次合并templeft=0,right=3
//最后一次0,7
arr[tempLeft]=temp[t];
t++;
tempLeft++;
}
}
}
基数排序
基本介绍
1)基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
2)基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
3)基数排序(Radix Sort)是桶排序的扩展
4)基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
基数排序基本思想
1)将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
2)这样说明,比较难理解,下面我们看一个图文解释,理解基数排序的步骤
基数排序图文说明
基数排序的说明:
1)基数排序是对传统桶排序的扩展,速度很快.
2)基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
3)基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]
4)有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9
常用排序算法总结和对比