黑盒测试和白盒测试定义及区别

本文详细介绍了黑盒测试和白盒测试的概念、测试方式及其区别。黑盒测试注重功能验证,白盒测试关注代码结构。文章还对比了两者的优缺点,帮助读者全面理解软件测试的不同方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单了解一下黑盒测试和白盒测试
一、定义
1.1黑盒测试
黑盒测试又称为功能测试,主要检测软件的每一个功能是否能够正常使用。在测试过程中,将程序看成不能打开的黑盒子,不考虑程序内部结构和特性的基础上通过程序接口进行测试,检查程序功能是否按照设计需求以及说明书的规定能够正常打开使用。
1.2白盒测试
白盒测试也称为结构测试,主要用于检测软件编码过程中的错误。程序员的编程经验、对编程软件的掌握程度、工作状态等因素都会影响到编程质量,导致代码错误。

二、测试方式
2.1黑盒测试
目前已知的有四种方法:①等价类划分法 ②边界值分析法 ③因果图法 ④错误推测法

毕竟等价类划分法是比较常用,因此下面举例介绍此方法:
根据其定义:等价类划分法是一种典型的、重要的黑盒测试方法,它将程序所有可能的输入数据划分为若干个等价类。然后从每个部分中选取具有代表性的数据当做测试用例。测试用例由有效等价类和无效等价类的代表数据组成,从而保证测试用例具有完整性和代表性。使用该方法设计测试用例主要有两个步骤:(1)确定等价类;(2)生成测试用例。
对于等价类划分法的测试常用的有2种:①笛卡尔乘积列出所有可能 ②较为高效的部分测试
第一种方法比较好理解,就是将所有的可能列出。而第二种方法,举一个例子。需测试的方法一共有3个互相独立的条件,而这3中条件分别对应4,5,6种,那我最终所需写的测试方法则至少得为6种(在独立的情况下,取最大的数字)。

2.2白盒测试
概念:白盒测试又名为结构测试,主要目的是发现软件程序编码过程中的错误。
白盒测试的方法有三种,一是程序结构分析,根据源代码可以首先绘制程序的流程图,然后根据流程图分析程序的结构。二是逻辑覆盖方测试,根据程序的内部结构,对所有的路径进行测试,是一种穷举路径的测试方法。三是基本路径测试,根据程序的逻辑判断,分析程序中的路径,再进行用例的设计。

三、区别
黑盒测试只在软件接口处进行,黑盒顾名思义,我们把测试对象看作一个黑盒子,我们无法看清里面具体是什么,只能给定输入,通过观察输出来判断是否有效。
白盒测试则是可以看见程序内部,是对于一个模块一个模块进行较为精细的测试。

黑盒测试和白盒测试优缺点
黑盒测试的优点有:
比较简单,不需要了解程序内部的代码及实现;
与软件的内部实现无关;
从用户角度出发,能很容易的知道用户会用到哪些功能,会遇到哪些问题;
基于软件开发文档,所以也能知道软件实现了文档中的哪些功能;
在做软件自动化测试时较为方便。
黑盒测试的缺点有:
不可能覆盖所有的代码,覆盖率较低,大概只能达到总代码量的 30%;
自动化测试的复用性较低。

白盒测试的优点有:
帮助软件测试人员增大代码的覆盖率,提高代码的质量,发现代码中隐藏的问题。
白盒测试的缺点有:
程序运行会有很多不同的路径,不可能测试所有的运行路径;
测试基于代码,只能测试开发人员做的对不对,而不能知道设计的正确与否,可能会漏掉一些功能需求;
系统庞大时,测试开销会非常大。

// 通过这次复习内容,对于黑盒测试与白盒测试的概念以及区别有了深入的理解;也希望对大伙有所帮助。

### 黑盒测试白盒测试区别 #### 定义 黑盒测试主要关注软件的功能表现,把被测对象视为一个封闭的子,不考虑其内部结构或实现细节。相反,白盒测试则基于对程序内部逻辑的理解来进行验证,即假设可以查看并理解代码的工作机制[^1]。 #### 测试视角 在执行黑盒测试时,测试者的角色更像是最终用户,只关心输入输出的结果而不涉及任何底层处理过程。而采用白策略的人会深入到源码层面去分析潜在的问题所在,这通常由开发团队成员完成因为需要具备一定的编程知识来解读算法流程图等资料[^2]。 #### 测试内容 黑侧重于检验应用程序能否按照规格说明书的要求正常运作,比如界面交互、业务规则遵循等方面;而对于那些隐藏于表面之下更深层次的技术问题,则更多依赖于白手段去挖掘,例如边界条件检查、循环覆盖度评估等功能点上的精确把控[^3]。 #### 测试技术 由于两者出发角度的不同,在具体操作上也有所区分。对于前者而言,往往是从外部环境模拟各种可能场景下的用户行为模式作为测试依据;后者则是利用静态分析工具或是动态跟踪调试器辅助定位缺陷位置,并确保每条分支语句至少被执行一次以上以达到充分覆盖率的目的[^4]。 ```python def black_box_test(input_data): output = application_functionality(input_data) # 假设这是某个应用的功能函数调用 expected_output = get_expected_result_based_on_specification(input_data) if output == expected_output: return True else: return False def white_box_test(code_block, test_case_generator): coverage_report = [] for case in test_case_generator.generate_cases(): result = execute_code_with_debugging_tools(code_block, case.input) if check_all_paths_executed(result.paths_taken): coverage_report.append((case, 'Pass')) else: coverage_report.append((case, 'Fail')) return summarize_coverage(coverage_report) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值