在成像方面,各传感器均受一定条件的制约,同时,目标自身状态和周边环境的变化也会在单一传感器中产生较大的成像差异。
按照较为严格的定义,图像融合是指综合和提取两个或多个多源图像信息,获得对同一场景或者目标更为准确、全面和可靠的图像,使之更加适合于人眼感知或计算机后续处理。而多传感器图像融合囊括了多个层次中信息融合所涵盖的相关处理和决策方式,其作用对象既包括不同传感器对同场景的感知解译,也包括同一传感器在一定时间区间内所获取的序列图像信息。
根据融合处理中信息合成所处的不同阶段,图像融合技术通常可大致分成三个层次:像素级融合、特征级融合、决策级融合。
(1)像素级融合
定义:待融合图像经过严格配准后对各源图像直接以像素点为单元进行信息综合与分析。像素级融合多数情况下被视为特征级融合和决策级融合的基础。目前对这种融合类型的研究最为集中。
主要任务:生成包含多源信息并具有高对比度的合成图像。
前提要求:各源图像在融合前必须进行严格配准。
不足:计算处理时间较长,对通信的带宽要求也较高。
(2)特征级融合
定义:从各源图像中提取所需要的特征信息,并将这些特征进行综合分析处理。
优势:1.保留足够重要信息的同时对信息实现有效压缩,有利于实时处理。2.有助于在各源图像中挖掘相关特征信息、增加信息维度,以建立更全面、更充分的新复合特征,用于后续的处理决策。3.对图像配准的要求不如像素级融合那样严格。
(3)决策级融合
定义:根据每个传感器数据源的可信度按一定准则对单模决策结果进行融合以得到最终的决策。可被理解为是一种全局最优决策。融合结果将为各种控制或决策提供依据。
特征:1.输入输出数据量通常低于像素级和特征级融合,也使其实时性在三者中最优。2.这种融合方式的信息损失最大。
在实际应用中融合层次并非严格按这三种方式划分,融合课相互交联以达到最佳效果。
图像融合技术是将各传感器得到的图像信息进行综合分析并加以利用的过程,其数据来源于各个传感器。以下是常见的各种传感器。
由于不同传感器对光谱和电磁波谱的敏感波段不同,图像融合实质上是实现多传感器宽波段覆盖探测的有效手段。
通过将多元传感器获得的图像数据以像素点为操作单元进行融合,生成新的合成图像,从而达到视景增强的目的。图像融合的组合方式既包括非同类成像传感器信息融合,也包括同类多波段成像传感器的信息融合。
对于直升机平台,夜间飞行员目视能力下降,若将微光夜视仪与红外热像仪成像结果进行融合,则可帮助飞行员显著提高对周边场景目标的感知和侦测能力。另外由于飞行高度较低,容易受到复杂地形和恶劣天气的影响,若将毫米波与红外成像进行融合,则有助于减轻飞行员在复杂环境下的操作负荷。对于舰载机平台,飞行员夜间目视观测仅能看到航母甲板上的跑道灯,无法直观知悉船体和海面的整体情况,若为舰载机装备着舰引导红外与可见光传感器的融合增强视景,有助于提高飞行员的着舰操作水平。当无人机执行打击后毁伤评估侦测任务时,实际战场存在大量烟雾、明火以及爆炸等较强干扰,依靠单一光学传感器难以做出正确评估,多光谱图像融合技术的优势在于可以从多维谱段对目标的毁伤状况进行综合评估,最大程度地抑制了战场环境的负面干扰源。
利用图像拼接技术可以将多幅固定视场范围的图像拼接合成为大视场区域图像,这一技术既可应用于电子地图更新,也可应用于分布式红外传感器的全景视野显示。