首先分析数据大小,n<20,依据经验判断是状态压缩。
令f[i][j]表示状态为i,最后到达点为j的方案数,
那么考虑下一个点能到达的情况,
就是最后一个点和现在这个点中间,没有点或者所有点都在i状态内可以预处理出来:
枚举两个点i,j求他们的之间点集。枚举一个k点,判下斜率相等即在i,j两点之间然后跑状压dp
很容易列出DP方程:设 f[S][j] 表示目前已经过的所有点的状态为 S,现在在 j 这个点,则:
f[S][j]=∑f[S−2j−1 ][k]
i大于4个1的时候加进答案
#include<bits/stdc++.h>
using namespace std;
const int N = 21, M = 1e8 + 7;
int f[1 << N][N], s[N][N], sum[1 << N];
int n, ans;
struct U {
int x, y;
}u[N];
bool ck(U a, U b, U c) {
//数学推导 y1/x1 = y2/x2 --> x1 * y2 = x2 * y1
return (a.x - b.x) * (b.y - c.y) == (b.x - c.x) * (a.y - b.y);
}
int main() {
scanf("%d", &n);
for(int i = 0; i < n; i ++) scanf("%d %d", &u[i].x, &u[i].y);
for(int i = 0; i < n; i ++)
for(int j = 0; j < n; j ++) {
if(j == i) continue;
for(int k = 0; k < n; k ++) {
if(k == i || k == j) continue;
//1.确定k在i,j区间之内 2.确定k在直线i,j上
if(((u[k].x - u[i].x) * (u[k].x - u[j].x) < 0 || (u[k].y - u[i].y) * (u[k].y - u[j].y) < 0) && ck(u[i], u[j], u[k]))
s[i][j] |= (1 << k);
}
}
//预处理每个起始状态的数量
for(int i = 0; i < n; i ++) f[1 << i][i] = 1;
//预处理每个状态中1的个数
for(int i = 1; i < (1 << n); i ++) sum[i] = sum[i >> 1] + (i & 1);
//从低级到高级 枚举状态
for(int i = 1; i < (1 << n); i ++)
for(int j = 0; j < n; j ++)
//如果此状态可以由低级的状态转移过来
if(f[i][j]) {
//如果这个状态内1的个数大于等于4,满足条件
if(sum[i] >= 4) ans = (ans + f[i][j]) % M;
//才当前点j出发,枚举接点k
for(int k = 0; k < n; k ++)
//1.k未在状态i中出现 2.线段j,k之间的点全部已在状态i中出现过
if(!((1 << k) & i) && (s[j][k] & i) == s[j][k])
f[i|(1 << k)][k] = (f[i|(1 << k)][k] + f[i][j]) % M;
}
cout << ans;
return 0;
}