[题]P4460 [CQOI2018]解锁屏幕 —— [中等] —— 标签:#动态规划dp #广度优先搜索BFS #状态压缩

这篇博客介绍了一种解决线段计数问题的方法,通过状态压缩和动态规划来计算满足特定条件的线段组合。博主首先分析了数据规模,并基于经验判断采用状态压缩。接着,预处理了线段之间的点集,并利用斜率相等判断线段是否共线。博主还给出了详细的动态规划方程,并进行了代码实现,最终得出答案。
摘要由CSDN通过智能技术生成

题目链接
参考博客
思路:~~

首先分析数据大小,n<20,依据经验判断是状态压缩。
令f[i][j]表示状态为i,最后到达点为j的方案数,
那么考虑下一个点能到达的情况,
就是最后一个点和现在这个点中间,没有点或者所有点都在i状态内

可以预处理出来:
枚举两个点i,j求他们的之间点集。枚举一个k点,判下斜率相等即在i,j两点之间

然后跑状压dp
很容易列出DP方程:设 f[S][j] 表示目前已经过的所有点的状态为 S,现在在 j 这个点,则:
f[S][j]=∑f[S−2j−1 ][k]
i大于4个1的时候加进答案

#include<bits/stdc++.h>
using namespace std;
const int N = 21, M = 1e8 + 7;
int f[1 << N][N], s[N][N], sum[1 << N];
int n, ans;
struct U {
	int x, y;
}u[N];
bool ck(U a, U b, U c) {
	//数学推导 y1/x1 = y2/x2 --> x1 * y2 = x2 * y1 
	return (a.x - b.x) * (b.y - c.y) == (b.x - c.x) * (a.y - b.y);
}
int main() {
	scanf("%d", &n);
	for(int i = 0; i < n; i ++) scanf("%d %d", &u[i].x, &u[i].y);
	for(int i = 0; i < n; i ++) 
		for(int j = 0; j < n; j ++) {
			if(j == i) continue;
			for(int k = 0; k < n; k ++) {
				if(k == i || k == j) continue;
				//1.确定k在i,j区间之内 2.确定k在直线i,j上 
				if(((u[k].x - u[i].x) * (u[k].x - u[j].x) < 0 || (u[k].y - u[i].y) * (u[k].y - u[j].y) < 0) && ck(u[i], u[j], u[k]))
					s[i][j] |= (1 << k);
			}
		}
	
	//预处理每个起始状态的数量 
	for(int i = 0; i < n; i ++) f[1 << i][i] = 1;
	//预处理每个状态中1的个数 
	for(int i = 1; i < (1 << n); i ++) sum[i] = sum[i >> 1] + (i & 1);
	//从低级到高级 枚举状态 
	for(int i = 1; i < (1 << n); i ++) 
		for(int j = 0; j < n; j ++)
			//如果此状态可以由低级的状态转移过来
			if(f[i][j]) {
				//如果这个状态内1的个数大于等于4,满足条件 
				if(sum[i] >= 4) ans = (ans + f[i][j]) % M;
				//才当前点j出发,枚举接点k 
				for(int k = 0; k < n; k ++)
					//1.k未在状态i中出现 2.线段j,k之间的点全部已在状态i中出现过 
					if(!((1 << k) & i) && (s[j][k] & i) == s[j][k])
						f[i|(1 << k)][k] = (f[i|(1 << k)][k] + f[i][j]) % M;
			}
	cout << ans;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值