关于数据类型的取值范围

直观图

在这里插入图片描述


double

double类型的数据最小值是4.940656458412465442e-324,是由于double类型采用的是IEEE 754标准的浮点数表示方法。在这种表示方法中,double类型的数据使用64位来存储,其中1位用于符号位(表示正负),11位用于指数位,52位用于尾数位。


最小值4.940656458412465442e-324对应的指数位全为0,尾数位全为1,符号位为0,代表一个非常接近于0的正数。根据IEEE 754标准,指数位全为0代表的指数是-1022(实际上是-1023加上一个隐含的1),所以最小值可以表示为2^(-1022)。


这个值非常接近于0,但不等于0。在计算机内部,0无法精确地用浮点数表示,因为尾数位全为0时代表的是无穷大或NaN(非数字)。所以,最小值4.940656458412465442e-324是double类型能够表示的最接近于0的正数。


问:什么是IEEE 754标准?


IEEE 754标准是一种定义了浮点数表示和运算的规范,它被广泛应用于计算机硬件和软件中。该标准定义了两种浮点数格式:单精度和双精度。—在IEEE 754标准中,双精度浮点数(double)被表示为64位二进制数。其中,第1位表示符号位(0代表正数,1代表负数),接下来的11位表示指数部分,剩下的52位表示尾数部分。


具体表示方法如下:1. 符号位:最左边的1位用于表示正负号,0表示正数,1表示负数。2. 指数部分:接下来的11位用于表示指数。实际的指数值是这个无符号整数减去一个偏移值(这里是1023),所以指数的范围是-1022到+1023。这允许浮点数表示非常大和非常小的数字。3. 尾数部分:剩下的52位用于表示尾数。尾数采用了一种称为“隐藏位”的技术,即省略了二进制小数的整数部分的1,只存储小数部分的二进制位。这使得可以用更多的位数来表示小数部分,提高了浮点数的精度。


根据上述表示方法,双精度浮点数可以表示非常大和非常小的数字,并且能够提供较高的精度。然而,由于浮点数在计算机中的表示是近似值,一些运算可能会导致舍入误差。


问:为什么double类型的指数部分指数的范围是-1022到1023?为什么不是-1023~1023?


double类型是一种浮点数类型,在计算机中表示浮点数使用了IEEE 754标准。在该标准中,double类型使用64位来表示一个浮点数,其中11位用来表示指数部分。


对于指数部分,最左边的一位是符号位,表示正负,接下来的11位用于表示指数大小。符号位取1表示负数,取0表示正数。指数部分由偏移编码表示,即真实的指数值加上一个偏移量。


对于double类型来说,偏移量是1023,所以指数范围可以表示为-1022到1023。如果指数部分在真实值上再加上1023(偏移量),最终表示的指数范围就是-1023到1023。


为什么不是-1023~1023呢?这是因为在IEEE 754标准中,为了保留一份特殊的编码,用于表示特殊情况,例如无穷大(Infinity)和非数值(NaN),所以将最小的指数范围-1023保留作为特殊情况下的指数编码。


总之,double类型的指数部分指数范围为-1022到1023,其中-1023被保留作为特殊情况下的编码,用于表示无穷大和非数值。
在这里插入图片描述



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值