深入浅出:从位运算、数据结构到算法与设计模式的全面技术指南“(第九节)涵盖双指针、反转、栈等技术,深入剖析了如“删除排序数组中的重复项”、“移动零”、“旋转数组”、“括号合法性判断”、“大鱼吃小鱼”以

Algorithm

Introduction:收纳技术相关的 Data StructureAlgorithmDesign Pattern等总结!

Case

双指针

删除排序数组中的重复项

给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

/**
 * 双指针解决
 */
public int removeDuplicates(int[] A) {
        // 边界条件判断
        if (A == null || A.length == 0){
            return 0;
	}
    
        int left = 0;
        for (int right = 1; right < A.length; right++){
            // 如果左指针和右指针指向的值一样,说明有重复的,
            // 这个时候,左指针不动,右指针继续往右移。如果他俩
            // 指向的值不一样就把右指针指向的值往前挪
            if (A[left] != A[right]){
                A[++left] = A[right];
            }
	}
        return ++left;
}

移动零

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。

**示例:**输入: [0,1,0,3,12],输出: [1,3,12,0,0]

可以参照双指针的思路解决,指针j是一直往后移动的,如果指向的值不等于0才对他进行操作。而i统计的是前面0的个数,我们可以把j-i看做另一个指针,它是指向前面第一个0的位置,然后我们让j指向的值和j-i指向的值交换

public void moveZeroes(int[] nums) {
    int i = 0;// 统计前面0的个数
    for (int j = 0; j < nums.length; j++) {
        if (nums[j] == 0) {//如果当前数字是0就不操作
            i++;
        } else if (i != 0) {
            //否则,把当前数字放到最前面那个0的位置,然后再把
            //当前位置设为0
            nums[j - i] = nums[j];
            nums[j] = 0;
        }
    }
}

反转

旋转数组

给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。

先反转全部数组,在反转前k个,最后在反转剩余的,如下所示:

在这里插入图片描述

public void rotate(int[] nums, int k) {
    int length = nums.length;
    k %= length;
    reverse(nums, 0, length - 1);//先反转全部的元素
    reverse(nums, 0, k - 1);//在反转前k个元素
    reverse(nums, k, length - 1);//接着反转剩余的
}

//把数组中从[start,end]之间的元素两两交换,也就是反转
public void reverse(int[] nums, int start, int end) {
    while (start < end) {
        int temp = nums[start];
        nums[start++] = nums[end];
        nums[end--] = temp;
    }
}

判断字符串括号是否合法

字符串中只有字符’(‘和’)'。合法字符串需要括号可以配对。如:(),()(),(())是合法的。)(,()(,(()是非法的。

① 栈

在这里插入图片描述

/**
 * 判断字符串括号是否合法
 *
 * @param s
 * @return
 */
public boolean isValid(String s) {
        // 当字符串本来就是空的时候,我们可以快速返回true
        if (s == null || s.length() == 0) {
            return true;
        }

        // 当字符串长度为奇数的时候,不可能是一个有效的合法字符串
        if (s.length() % 2 == 1) {
            return false;
        }

        // 消除法的主要核心逻辑:
        Stack<Character> t = new Stack<>();
        for (int i = 0; i < s.length(); i++) {
            // 取出字符
            char c = s.charAt(i);
            if (c == '(') {
                // 如果是'(',那么压栈
                t.push(c);
            } else if (c == ')') {
                // 如果是')',那么就尝试弹栈
                if (t.empty()) {
                    // 如果弹栈失败,那么返回false
                    return false;
                }
                t.pop();
            }
        }

        return t.empty();
}

复杂度分析:每个字符只入栈一次,出栈一次,所以时间复杂度为 O(N),而空间复杂度为 O(N),因为最差情况下可能会把整个字符串都入栈。

② 栈深度扩展

如果仔细观察,你会发现,栈中存放的元素是一样的。全部都是左括号’(',除此之外,再也没有别的元素,优化方法如下。栈中元素都相同时,实际上没有必要使用栈,只需要记录栈中元素个数。 我们可以通过画图来解决这个问题,如下图所示:

在这里插入图片描述

/**
 * 判断字符串括号是否合法
 *
 * @param s
 * @return
 */
public boolean isValid(String s) {
        // 当字符串本来就是空的时候,我们可以快速返回true
        if (s == null || s.length() == 0) {
            return true;
        }

        // 当字符串长度为奇数的时候,不可能是一个有效的合法字符串
        if (s.length() % 2 == 1) {
            return false;
        }

        // 消除法的主要核心逻辑:
        int leftBraceNumber = 0;
        for (int i = 0; i < s.length(); i++) {
            // 取出字符
            char c = s.charAt(i);
            if (c == '(') {
                // 如果是'(',那么压栈
                leftBraceNumber++;
            } else if (c == ')') {
                // 如果是')',那么就尝试弹栈
                if (leftBraceNumber <= 0) {
                    // 如果弹栈失败,那么返回false
                    return false;
                }
                --leftBraceNumber;
            }
        }

        return leftBraceNumber == 0;
}

复杂度分析:每个字符只入栈一次,出栈一次,所以时间复杂度为 O(N),而空间复杂度为 O(1),因为我们已经只用一个变量来记录栈中的内容。

③ 栈广度扩展

接下来再来看看如何进行广度扩展。观察题目可以发现,栈中只存放了一个维度的信息:左括号’(‘和右括号’)‘。如果栈中的内容变得更加丰富一点,就可以得到下面这道扩展题。给定一个只包括 ‘(’,’)‘,’{‘,’}‘,’[‘,’]’ 的字符串,判断字符串是否有效。有效字符串需满足:

  • 左括号必须用相同类型的右括号闭合
  • 左括号必须以正确的顺序闭合
  • 注意空字符串可被认为是有效字符串
/**
 * 判断字符串括号是否合法
 *
 * @param s
 * @return
 */
public boolean isValid(String s) {
        if (s == null || s.length() == 0) {
            return true;
        }
        if (s.length() % 2 == 1) {
            return false;
        }

        Stack<Character> t = new Stack<>();
        for (int i = 0; i < s.length(); i++) {
            char c = s.charAt(i);
            if (c == '{' || c == '(' || c == '[') {
                t.push(c);
            } else if (c == '}') {
                if (t.empty() || t.peek() != '{') {
                    return false;
                }
                t.pop();
            } else if (c == ']') {
                if (t.empty() || t.peek() != '[') {
                    return false;
                }
                t.pop();
            } else if (c == ')') {
                if (t.empty() || t.peek() != '(') {
                    return false;
                }
                t.pop();
            } else {
                return false;
            }
        }

        return t.empty();
}

大鱼吃小鱼

在水中有许多鱼,可以认为这些鱼停放在 x 轴上。再给定两个数组 Size,Dir,Size[i] 表示第 i 条鱼的大小,Dir[i] 表示鱼的方向 (0 表示向左游,1 表示向右游)。这两个数组分别表示鱼的大小和游动的方向,并且两个数组的长度相等。鱼的行为符合以下几个条件:

  • 所有的鱼都同时开始游动,每次按照鱼的方向,都游动一个单位距离
  • 当方向相对时,大鱼会吃掉小鱼;
  • 鱼的大小都不一样。

输入:Size = [4, 3, 2, 1, 5], Dir = [1, 1, 1, 1, 0],输出:1。请完成以下接口来计算还剩下几条鱼?

在这里插入图片描述

/**
 * 大鱼吃小鱼
 *
 * @param fishSize
 * @param fishDirection
 * @return
 */
public int solution(int[] fishSize, int[] fishDirection) {
        // 首先拿到鱼的数量: 如果鱼的数量小于等于1,那么直接返回鱼的数量
        final int fishNumber = fishSize.length;
        if (fishNumber <= 1) {
            return fishNumber;
        }

        // 0表示鱼向左游
        final int left = 0;
        // 1表示鱼向右游
        final int right = 1;
        Stack<Integer> t = new Stack<>();
        for (int i = 0; i < fishNumber; i++) {
            // 当前鱼的情况:1,游动的方向;2,大小
            final int curFishDirection = fishDirection[i];
            final int curFishSize = fishSize[i];
            // 当前的鱼是否被栈中的鱼吃掉了
            boolean hasEat = false;
            // 如果栈中还有鱼,并且栈中鱼向右,当前的鱼向左游,那么就会有相遇的可能性
            while (!t.empty() && fishDirection[t.peek()] == right && curFishDirection == left) {
                // 如果栈顶的鱼比较大,那么把新来的吃掉
                if (fishSize[t.peek()] > curFishSize) {
                    hasEat = true;
                    break;
                }
                // 如果栈中的鱼较小,那么会把栈中的鱼吃掉,栈中的鱼被消除,所以需要弹栈。
                t.pop();
            }
            // 如果新来的鱼,没有被吃掉,那么压入栈中。
            if (!hasEat) {
                t.push(i);
            }
        }

        return t.size();
}

找出数组中右边比我小的元素

一个整数数组 A,找到每个元素:右边第一个比我小的下标位置,没有则用 -1 表示。输入:[5, 2],输出:[1, -1]。

/**
 * 找出数组中右边比我小的元素
 *
 * @param A
 * @return
 */
public static int[] findRightSmall(int[] A) {
        // 结果数组
        int[] ans = new int[A.length];
        // 注意,栈中的元素记录的是下标
        Stack<Integer> t = new Stack<>();
        for (int i = 0; i < A.length; i++) {
            final int x = A[i];
            // 每个元素都向左遍历栈中的元素完成消除动作
            while (!t.empty() && A[t.peek()] > x) {
                // 消除的时候,记录一下被谁消除了
                ans[t.peek()] = i;
                // 消除时候,值更大的需要从栈中消失
                t.pop();
            }
            // 剩下的入栈
            t.push(i);
        }
        // 栈中剩下的元素,由于没有人能消除他们,因此,只能将结果设置为-1。
        while (!t.empty()) {
            ans[t.peek()] = -1;
            t.pop();
        }
        return ans;
}

字典序最小的 k 个数的子序列

给定一个正整数数组和 k,要求依次取出 k 个数,输出其中数组的一个子序列,需要满足:1. 长度为 k;2.字典序最小

输入:nums = [3,5,2,6], k = 2,输出:[2,6]

解释:在所有可能的解:{[3,5], [3,2], [3,6], [5,2], [5,6], [2,6]} 中,[2,6] 字典序最小。所谓字典序就是,给定两个数组:x = [x1,x2,x3,x4],y = [y1,y2,y3,y4],如果 0 ≤ p < i,xp == yp 且 xi < yi,那么我们认为 x 的字典序小于 y。

/**
 * 字典序最小的 k 个数的子序列
 *
 * @param nums
 * @param k
 * @return
 */
public int[] findSmallSeq(int[] nums, int k) {
        int[] ans = new int[k];
        Stack<Integer> s = new Stack();
        // 这里生成单调栈
        for (int i = 0; i < nums.length; i++) {
            final int x = nums[i];
            final int left = nums.length - i;
            // 注意我们想要提取出k个数,所以注意控制扔掉的数的个数
            while (!s.empty() && (s.size() + left > k) && s.peek() > x) {
                s.pop();
            }
            s.push(x);
        }
        // 如果递增栈里面的数太多,那么我们只需要取出前k个就可以了。
        // 多余的栈中的元素需要扔掉。
        while (s.size() > k) {
            s.pop();
        }
        // 把k个元素取出来,注意这里取的顺序!
        for (int i = k - 1; i >= 0; i--) {
            ans[i] = s.peek();
            s.pop();
        }
        return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_未来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值