传送门:暑假集训第四场——HHarder Gcd Problem
题解:
首先使用欧拉筛的将在N的范围之内的素数筛选出来,然后因为1和素数和素数的倍数可以组成所有的N。所以我们通过素数来筛选数字不会遗漏。将所有这个素数的和素数的倍数压入到队列中(注意要从大到小去遍历素数),计算个数,如果个数是奇数的话就将2倍素数的那个数压入到素数2的队列中,这样做的原因是2是一个最小的素数,如果其他队列中有奇数我们就把多余的那个看成2*素数(取名为p), p压入到2中这样最后没匹配的最多就只有一个
#include<iostream>
#include<string>
#include<cstring>
#include<vector>
using namespace std;
vector<int> v[200005];
bool vis[200005];
const int N=200005;
int primes[N];
bool st[N];
void get_primes()
{
int cnt=0;
//1²»ÊÇÖÊÊýÒ²²»ÊǺÏÊý
for(int i=2;i<=N;i++){
if(!st[i]) primes[++cnt]=i;//ûÓб»É¸È¥,˵Ã÷ÊÇÖÊÊý
for(int j=1;i*primes[j]<=N;j++){
st[i*primes[j]]=true;//ɸȥºÏÊý
if(i%primes[j]==0) break;//ºËÐIJÙ×÷,±£Ö¤ÁËO(n)µÄ¸´ÔÓ¶È
}
}
}
int main()
{
int t;
cin >> t;
int n = 0;
get_primes();
while(t--)
{
for(int i = 2; i <= n/2; i++)
{
v[i].clear();
}
memset(vis, 0, sizeof(vis));
cin >> n;
for(int i = n/2; i > 1; i--)
{
if(st[i])
continue;
int cnt = 1;
while(cnt*i <= n)
{
if(!vis[cnt*i])
{
v[i].push_back(cnt*i);
vis[cnt*i] = 1;
}
cnt++;
}
}
int ans = 0;
for(int i = n/2; i > 1; i--)
{
if(v[i].size()%2 == 0)
ans += (v[i].size()/2);
else if(v[i].size() > 1)
{
ans += (v[i].size()/2);
if(i != 2)
v[2].push_back(v[i][1]);
}
}
cout << ans << endl;
for(int i = 2; i <= n/2; i++)
{
if(v[i].size()%2 == 0)
{
for(int z = 0; z < v[i].size(); z = z + 2)
{
cout << v[i][z] << ' ' << v[i][z+1] << endl;
}
}
else if(v[i].size() > 1)
{
cout << v[i][0] << ' ' << v[i][2] << endl;
for(int z = 3; z < v[i].size(); z = z + 2)
cout << v[i][z] << ' ' << v[i][z+1] << endl;
}
}
}
return 0;
}