线性欧拉筛拓展——Harder Gcd Problem

传送门:暑假集训第四场——HHarder Gcd Problem
题解:
首先使用欧拉筛的将在N的范围之内的素数筛选出来,然后因为1和素数和素数的倍数可以组成所有的N。所以我们通过素数来筛选数字不会遗漏。将所有这个素数的和素数的倍数压入到队列中(注意要从大到小去遍历素数),计算个数,如果个数是奇数的话就将2倍素数的那个数压入到素数2的队列中,这样做的原因是2是一个最小的素数,如果其他队列中有奇数我们就把多余的那个看成2*素数(取名为p), p压入到2中这样最后没匹配的最多就只有一个

#include<iostream>
#include<string>
#include<cstring>
#include<vector>
using namespace std;
vector<int> v[200005];
bool vis[200005];
const int N=200005;
int primes[N];
bool st[N];

void get_primes()
{
    int cnt=0;
    //1²»ÊÇÖÊÊýÒ²²»ÊǺÏÊý
    for(int i=2;i<=N;i++){
        if(!st[i]) primes[++cnt]=i;//ûÓб»É¸È¥,˵Ã÷ÊÇÖÊÊý
        for(int j=1;i*primes[j]<=N;j++){
            st[i*primes[j]]=true;//ɸȥºÏÊý
            if(i%primes[j]==0) break;//ºËÐIJÙ×÷,±£Ö¤ÁËO(n)µÄ¸´ÔÓ¶È
        }
    }
}

int main()
{
	int t;
	cin >> t;
	int n = 0;
	get_primes();
	while(t--)
	{
		for(int i = 2; i <= n/2; i++)
		{
			v[i].clear();	
		}
		memset(vis, 0, sizeof(vis));
		cin >> n;
		for(int i = n/2; i > 1; i--)
		{
			if(st[i])
				continue; 
			int cnt = 1;
			while(cnt*i <= n)
			{
				if(!vis[cnt*i])
				{
					v[i].push_back(cnt*i);	
					vis[cnt*i] = 1;
				}	
				cnt++;	
			}	
		}
		int ans = 0;
		for(int i = n/2; i > 1; i--)
		{
			if(v[i].size()%2 == 0)
				ans += (v[i].size()/2);
			else if(v[i].size() > 1)
			{
				ans += (v[i].size()/2);
				if(i != 2)
					v[2].push_back(v[i][1]);
			}
		}	
		cout << ans << endl;
		for(int i = 2; i <= n/2; i++)
		{
			if(v[i].size()%2 == 0)
			{
				for(int z = 0; z < v[i].size(); z = z + 2)
				{
					cout << v[i][z] << ' ' << v[i][z+1] << endl; 
				}
			}
			else if(v[i].size() > 1)
			{
				cout << v[i][0] << ' ' << v[i][2] << endl;
				for(int z = 3; z < v[i].size(); z = z + 2)
					cout << v[i][z] << ' ' << v[i][z+1] << endl;  
			}
		}
		
	}	
	return 0;	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值