实验报告
课程名称 《算法分析与设计》 实验日期 2020 年 5 月26日 至 2020年 6月 2 日
学生姓名 戴昊宇 所在班级 计算机184 学号 2018212212015
实验名称 图的m着色问题
实验地点 同组人员 无
1.问题
给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答”NO”。
2.解析
设G有n个顶点,将顶点编号为1,2,…,n,则搜索空间为深度n的m叉完全树,将颜色编号为1,2,…,m,结点<x1,x2,…,xk>{x1,x2,…,xk属于{1,2,…,m},1<=k<=n)表示顶点1的颜色x1,顶点2的颜色x2,…,顶点k的颜色xk。
3.设计
每个结点要和其他所有顶点的颜色进行比较,进行n-1次比较。
4.分析
算法复杂度:
我的算法为O(mn^2)
最坏情况下为O(nm^n)
5.源码
https://github.com/yyqx-1128/text