python 遥感多波段合成

将下图文件夹中的b2,b3,b4,b8单波段合成tif文件
在这里插入图片描述

# -*- coding: utf-8 -*
# @Author  : ZhangMin
# @Time    :  2020/7/20 17:38

'''
波段合成
'''
import os

import numpy as np
from osgeo import gdal

os.environ['PROJ_LIB'] = r'D:\Anaconda3\envs\cloneTF21\Library\share\proj'


class GRID:

    # 读图像文件
    def read_img(self, filename):
        dataset = gdal.Open(filename)  # 打开文件

        im_width = dataset.RasterXSize  # 栅格矩阵的列数
        im_height = dataset.RasterYSize  # 栅格矩阵的行数

        im_geotrans = dataset.GetGeoTransform()  # 仿射矩阵
        im_proj = dataset.GetProjection()  # 地图投影信息
        im_data = dataset.ReadAsArray(0, 0, im_width, im_height)  # 将数据写成数组,对应栅格矩阵
        
		# 下面两句读取影像中的绿波段和近红外波段,本文用不到
		# GreedBand = dataset.GetRasterBand(2).ReadAsArray(0, 0, cols, rows)
		# NIRBand = dataset.GetRasterBand(7).ReadAsArray(0, 0, cols, rows)

		
        del dataset  # 关闭对象,文件dataset
        return im_proj, im_geotrans, im_data, im_width, im_height

    # 写文件,以写成tif为例
    def write_img(self, filename, im_proj, im_geotrans, im_data):

        # 判断栅格数据的数据类型
        if 'int8' in im_data.dtype.name:
            datatype = gdal.GDT_Byte
        elif 'int16' in im_data.dtype.name:
            datatype = gdal.GDT_UInt16
        else:
            datatype = gdal.GDT_Float32

        # 判读数组维数
        if len(im_data.shape) == 3:
            im_bands, im_height, im_width = im_data.shape
        else:
            im_bands, (im_height, im_width) = 1, im_data.shape

        # 创建文件
        driver = gdal.GetDriverByName("GTiff")  # 数据类型必须有,因为要计算需要多大内存空间
        dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)

        dataset.SetGeoTransform(im_geotrans)  # 写入仿射变换参数
        dataset.SetProjection(im_proj)  # 写入投影

        if im_bands == 1:
            dataset.GetRasterBand(1).WriteArray(im_data)  # 写入数组数据
        else:
            for i in range(im_bands):
                dataset.GetRasterBand(i + 1).WriteArray(im_data[i])

        del dataset

if __name__ == "__main__":
    run = GRID()
    # 重采样的文件夹
    dir_Resample = r"I:\2015_2020jiulongjiangkou\2Resample"
    # 合成后保存的文件夹
    dir_layerstack = r"I:\2015_2020jiulongjiangkou\3layerstack"
    for filename in os.listdir(dir_Resample):
        # 取影像名称的日期信息 如20180511
        timename = filename[11:19]
        print(filename)
        print(timename)
        # join 连接文件夹父目录dir 和 父目录下的文件夹 i
        path = os.path.join(dir_Resample, filename)
        if os.path.isdir(path):
            os.chdir(path)  # 切换路径到待处理图像所在文件夹
            # 第一步:读取影像文件夹的单波段b2,b3,b4....
            proj, geotrans, data1, row1, column1 = run.read_img('B2.img')  # 读数据
            proj2, geotrans2, data2, row2, column2 = run.read_img('B3.img')  # 读数据
            proj3, geotrans3, data3, row3, column3 = run.read_img('B4.img')  # 读数据
            proj4, geotrans4, data4, row4, column4 = run.read_img('B8.img')  # 读数据

            # 第二步:各单波段数组放在一个大的数组下
            data = np.array((data1, data2, data3, data4), dtype=data1.dtype)  # 按序将3个波段像元值放入

            # 第三步:写文件合成波段
            run.write_img(dir_layerstack + '/' + timename + '.tif', proj, geotrans, data)  # 写为3波段数据
            print(timename + "波段合成一次")

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值