将下图文件夹中的b2,b3,b4,b8单波段合成tif文件
# -*- coding: utf-8 -*
# @Author : ZhangMin
# @Time : 2020/7/20 17:38
'''
波段合成
'''
import os
import numpy as np
from osgeo import gdal
os.environ['PROJ_LIB'] = r'D:\Anaconda3\envs\cloneTF21\Library\share\proj'
class GRID:
# 读图像文件
def read_img(self, filename):
dataset = gdal.Open(filename) # 打开文件
im_width = dataset.RasterXSize # 栅格矩阵的列数
im_height = dataset.RasterYSize # 栅格矩阵的行数
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
im_proj = dataset.GetProjection() # 地图投影信息
im_data = dataset.ReadAsArray(0, 0, im_width, im_height) # 将数据写成数组,对应栅格矩阵
# 下面两句读取影像中的绿波段和近红外波段,本文用不到
# GreedBand = dataset.GetRasterBand(2).ReadAsArray(0, 0, cols, rows)
# NIRBand = dataset.GetRasterBand(7).ReadAsArray(0, 0, cols, rows)
del dataset # 关闭对象,文件dataset
return im_proj, im_geotrans, im_data, im_width, im_height
# 写文件,以写成tif为例
def write_img(self, filename, im_proj, im_geotrans, im_data):
# 判断栅格数据的数据类型
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
# 判读数组维数
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1, im_data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff") # 数据类型必须有,因为要计算需要多大内存空间
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
dataset.SetProjection(im_proj) # 写入投影
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
else:
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
if __name__ == "__main__":
run = GRID()
# 重采样的文件夹
dir_Resample = r"I:\2015_2020jiulongjiangkou\2Resample"
# 合成后保存的文件夹
dir_layerstack = r"I:\2015_2020jiulongjiangkou\3layerstack"
for filename in os.listdir(dir_Resample):
# 取影像名称的日期信息 如20180511
timename = filename[11:19]
print(filename)
print(timename)
# join 连接文件夹父目录dir 和 父目录下的文件夹 i
path = os.path.join(dir_Resample, filename)
if os.path.isdir(path):
os.chdir(path) # 切换路径到待处理图像所在文件夹
# 第一步:读取影像文件夹的单波段b2,b3,b4....
proj, geotrans, data1, row1, column1 = run.read_img('B2.img') # 读数据
proj2, geotrans2, data2, row2, column2 = run.read_img('B3.img') # 读数据
proj3, geotrans3, data3, row3, column3 = run.read_img('B4.img') # 读数据
proj4, geotrans4, data4, row4, column4 = run.read_img('B8.img') # 读数据
# 第二步:各单波段数组放在一个大的数组下
data = np.array((data1, data2, data3, data4), dtype=data1.dtype) # 按序将3个波段像元值放入
# 第三步:写文件合成波段
run.write_img(dir_layerstack + '/' + timename + '.tif', proj, geotrans, data) # 写为3波段数据
print(timename + "波段合成一次")