二叉树

二叉树的定义与性质

定义

二叉树是n个结点的有限集合,该集合或者为空集,或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
在这里插入图片描述
如上图就是一个二叉树。

特点

  • 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。
  • 左子树和右子树是有顺序的,次序不能任意颠倒。
  • 即使树中某结点只有一颗子树,也要区分它是左子树还是右子树。

五种基本形态

  • 空二叉树
  • 只有一个根节点
  • 根结点只有左子树
  • 根结点只有右子树
  • 根结点既有左子树又有右子树

特殊二叉树

  • 斜树
  • 满二叉树
  • 完全二叉树
斜树

顾名思义,斜树是要斜的。所有结点都只有左子树的二叉树叫做左斜树,所有结点都只有右子树叫做右斜树。线性表结构就可以理解为是树的一种特殊表现形式。

满二叉树

在一棵二叉树中,如果所有分支结点都存不在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
如图:
在这里插入图片描述
满二叉树的特点:

  • 叶子都出现在最后一层
  • 非叶子结点的度一定是二
  • 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多
完全二叉树

对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
如图:
在这里插入图片描述
注:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
如下图都不是完全二叉树:
在这里插入图片描述
完全二叉树的特点:

  • 叶子结点只能出现在最下两层
  • 最下层的叶子一定集中在左部连续位置
  • 倒数二层,若有叶子结点,一定都在右部连续位置
  • 如果结点度为1,则该结点只有左孩子
  • 同样结点数的二叉树,完全二叉树的深度最小

二叉树的性质

  • 在二叉树的第i层上最多有2^(i-1)个结点(i>=1)
  • 深度为i的二叉树最多有2^i-1个结点
  • 都任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
  • 具有n个结点的完全二叉树的深度为以二为底数n的对数+1

以上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值