二叉树的定义与性质
定义
二叉树是n个结点的有限集合,该集合或者为空集,或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
如上图就是一个二叉树。
特点
- 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。
- 左子树和右子树是有顺序的,次序不能任意颠倒。
- 即使树中某结点只有一颗子树,也要区分它是左子树还是右子树。
五种基本形态
- 空二叉树
- 只有一个根节点
- 根结点只有左子树
- 根结点只有右子树
- 根结点既有左子树又有右子树
特殊二叉树
- 斜树
- 满二叉树
- 完全二叉树
斜树
顾名思义,斜树是要斜的。所有结点都只有左子树的二叉树叫做左斜树,所有结点都只有右子树叫做右斜树。线性表结构就可以理解为是树的一种特殊表现形式。
满二叉树
在一棵二叉树中,如果所有分支结点都存不在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
如图:
满二叉树的特点:
- 叶子都出现在最后一层
- 非叶子结点的度一定是二
- 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
如图:
注:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
如下图都不是完全二叉树:
完全二叉树的特点:
- 叶子结点只能出现在最下两层
- 最下层的叶子一定集中在左部连续位置
- 倒数二层,若有叶子结点,一定都在右部连续位置
- 如果结点度为1,则该结点只有左孩子
- 同样结点数的二叉树,完全二叉树的深度最小
二叉树的性质
- 在二叉树的第i层上最多有2^(i-1)个结点(i>=1)
- 深度为i的二叉树最多有2^i-1个结点
- 都任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
- 具有n个结点的完全二叉树的深度为以二为底数n的对数+1
以上。