自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 python数据分析实例:客户流失预警模型

python数据分析实例:客户流失预警模型客户流失是电信行业最重要的服务方面之一。客户流失的广义说法是因为客户自己或运营商违反服务协议而终止客户服务的行为。流失预测流程一共分为四个步骤,分别为(1)数据预处理(2)特征选择(3)模型选择(4)模型评估1. 数据理解数据取自于kaggle平台分享的数据集,共有21个字段7043条记录。 数据主要包括影响客户流失的各种因素(性别、是否为老年人、客户是否有合作伙伴、客户是否有依赖关系、客户在公司停留的月数、客户是否有电话服务、客户是否有多条线路、客户的互联

2020-09-13 10:57:31 3310 1

原创 基于doc2vec计算文本相似度

@基于doc2vec计算文本相似度Doc2vec​Doc2vec又叫Paragraph Vector是Tomas Mikolov基于word2vec模型提出的,其具有一些优点,比如不用固定句子长度,接受不同长度的句子做训练样本,Doc2vec是一个无监督学习算法,该算法用于预测一个向量来表示不同的文档,该模型的结构潜在的克服了词袋模型的缺点。​Doc2vec模型是受到了word2vec模型的启发,word2vec里预测词向量时,预测出来的词是含有词义的,比如上文提到的词向量’powerful’会相对于

2020-08-07 19:15:16 3272

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除