2020爱分析·中国人工智能厂商全景报告

报告摘要
在企业数字化转型和新基建政策驱动下,国内AI应用已经由技术尝试转入规模化应用。一方面,企业数字化转型催生了海量智能化应用场景,从企业的生产制造、供应链、营销与销售、交付与服务的价值链来看,在每个环节都存在可利用AI改善盈利的空间。另一方面,新基建赋能AI基础设施升级,并进一步拓展AI应用场景,覆盖智能生产、智能运维和智慧交通等多领域。
基于对国内各行业甲方企业的调研,爱分析认为,企业人工智能应用呈现以下趋势:

知识图谱技术应用场景爆发,从增强自然语言能力、人工智能模型的可解释性和机器学习的能力三个维度助力企业实现认知智能;

AI+RPA的融合应用实现企业端到端的业务流程自动化;

AI中台以平台化开发模式替代“烟囱式”开发架构,为AI应用开发提供快速构建能力支持。

在企业落地AI应用的过程中,爱分析提出以下建议:

从顶层规划开始,自上而下推动。管理层尽早规划AI应用场景的优先顺序,从潜在价值大小、可行性两个维度对AI用例进行筛选和优先级排序,可着眼于核心场景率先收获成效。

在大规模部署AI应用之前,企业需要进行数据资产盘点和数据治理工作,完善数据仓库、大数据平台等IT基础设施建设。

构建AI中台,提升人工智能工程化能力。完善的基础设施(包括高性能计算资源、运行环境资源等)是构建AI中台的第一步,在此基础之上,企业应部署相应的算法能力。

目录
\1. 人工智能应用新趋势
\2. 人工智能全景地图
\3. 人工智能代表厂商
\4. 人工智能厂商解读
关于爱分析
研究与咨询服务
法律声明

1、人工智能应用新趋势

现阶段,国内人工智能应用已经由技术尝试转入规模化应用,主要受到两方面因素驱动:一方面在宏观经济下行的背景下,面对利润下滑和经营成本增加的压力,企业已经普遍意识到数字化转型作为驱动业务增长的新引擎的价值,催生海量智能化应用场景。
另一方面,新基建从数据、算法和算力三个方面推动人工智能基础设施的完善,并进一步拓展人工智能应用场景。新基建包括5G基站建设、特高压、城际高速铁路和城际轨道交通、新能源汽车充电桩、大数据中心、人工智能和工业互联网七大领域。基于边缘计算、5G等新技术的融合应用将成为下一个人工智能产业机会点。
以5G的应用为例。5G可以支撑大量设备实时在线和海量数据的传输,提升数据实时性。以往大量的工业生产现场不具备建设高带宽有线网络的条件,传统的Wi-Fi等无线网络也不满足带宽要求,无法通过高清视频监控实现对产线故障、人员违规操作等异常状况的实时监控和识别预警,而5G网络提供了新解决方案,基于5G,可结合AR/VR技术,对设备故障进行远程专家诊断和运维。
展望未来,企业人工智能应用发展趋势集中体现在以下三方面:

1)知识图谱技术应用场景爆发,助力企业实现认知智能

企业非结构化数据占比已达到80%,知识图谱技术为企业提供了一种从海量非结构化数据中抽取结构化知识,并利用图分析进行关联关系挖掘的技术手段,洞察“肉眼”无法发现的关系和逻辑,为决策提供支持。
知识图谱是实现认知智能的关键技术。一方面,知识图谱能够增强自然语言理解能力:知识图谱包含的实体规模大(如在公安场景,知识图谱即有16亿实体)且具备多种常见语义关系,RDF三元组的表达方式能够帮助机器有效处理的语义结构,且知识图谱能够利用大数据的多源特性进行交叉验证,为自然语言理解提供知识背景,提升模型精准性;此外,知识图谱可增加人工智能模型的可解释性:知识图谱涵盖概念、属性和关系的表达,能够利用属性对于实体进行准确归类,对人工智能模型进行解释;最后,知识图谱能够提升机器学习的能力:与通过大样本训练进行机器学习模型训练不同,知识图谱能够结合专业领域、通用领域的知识库,降低机器学习模型对于大样本的依赖和对先验知识的利用率,提高机器学习模型训练效率。

2)AI+RPA的实现端到端的业务流程自动化

RPA和AI本质上是两种截然不同的技术。RPA负责执行,即利用代码编写规则,通过软件机器人模拟人与计算机的交互过程,自动完成重复性工作。AI则负责发布指令,即利用代码编写模型,模型经过海量数据的训练后可进行输出,完成特定任务。此外,AI具备自我学习、纠错和优化能力,能够帮企业挖掘哪些流程适合自动化、创建自动化流程让RPA机器人执行。
在传统与RPA技术相关的业务流程中,AI+RPA更多涉及非结构化数据的处理。随着企业业务的发展,非结构化数据增长迅速,但传统RPA机器人不具备处理非结构化数据的能力。AI+RPA能够将RPA与NLP和机器学习等算法结合,将非结构化的图片、文档转化为结构化数据,拓展RPA应用边界。例如,在电商场景,用户下完后需要修改地址时,可利用AI技术通过多轮对话确认用户要修改的订单和地址,使用 RPA机器人操作订单系统完成地址更改,全流程无需人工客服参与,有效提升了服务效率。

3)AI中台助力企业智能化落地

随着人工智能应用场景大规模增长,企业技术能力不足、资源重复建设、业务敏捷响应慢和投入产出低的问题进一步凸显。尤其是新场景下应用开发效率低,阻碍了企业内部AI应用场景的拓展。大多数企业在AI工程能力建设方面存在不足,Gartner的研究表明,只有53%的项目能够将AI原型转化为生产。
有鉴于此,越来越多的企业将以中台思维取代过去的“烟囱式”单点项目模式,通过构建统一的AI中台对智能应用提供人工智能能力支撑。AI中台以平台化开发模式替代“烟囱式”开发架构,在数据接入和数据清洗环节实现智能化,在模型建立和模型迭代等环节结合自动化、低门槛的建模,提升投入产出比,为AI应用开发提供快速构建能力支持。
目前,头部企业已率先布局,自上而下建立AI中台。以金融行业为例,某国有银行搭建的机器学习平台已上线精准营销、风险防范/预测舒心等场景,将项目研发落地速度提升了一倍,新场景的开发部署仅需1个月。

2、人工智能全景地图

爱分析基于对金融、消费品与零售、政府与公共服务等行业企业和人工智能厂商的调研,梳理了21个人工智能重点应用场景,涵盖特定行业及通用职能部门。同时根据调研,爱分析遴选出在这些应用场景中具备成熟解决方案和落地能力的代表厂商,如下图所示。
(注:以下所有场景中的厂商均按音序排序)

img

2.1.通用职能部门
2.1.1.IT部门
2.1.1.1.自助式AI建模

终端用户:
企业IT部门的数据科学家、数据工程师,业务部门的数据分析师
核心需求:
企业传统建模方式包含多个阶段、路径和参数,组合数量过大;且建模流程需人工操作,耗时长,难以及时响应业务需求变化。企业需要将建模流程自动化、智能化和高效化,尤其是当数据源发生改变时,可通过自动化建模完成模型更新迭代,提升建模效率;
AI建模语言和工具学习门槛高,依赖数据科学家的业务经验和技术能力。但企业内部人才缺口较大。且AI应用开发外包价格昂贵,推高研发成本和人力成本。企业需要低门槛、可便捷操作的建模平台,可面向数据科学家、数据工程师和业务人员使用,降低人力成本。
厂商能力要求:
能够提供自助式AI建模平台,平台能够支持主流算法和建模工具,数据科学家、数据工程师能够以拖拉拽建模和IDE方式建模。平台基于自动机器学习(AutoML)技术,能够帮助企业实现机器学习的特征工程、模型选择、参数调优、模型部署、模型发布、模型优化等过程的自动化或半自动化。
代表厂商:

img

2.1.1.2.IT运维管理

终端用户:
企业信息科技部门的运维工程师
核心需求:
企业部分应用的架构从集中式转向分布式和微服务架构,使得企业中存在多种应用架构并存的局面,这种异构性使得故障的原因变得更为复杂,增加了运维人员的运维难度,企业迫切需要制定统一的运维标准,提升运维过程的自动化水平和效率;
随着业务创新对IT部门的响应速度要求越来越高,IT不但需要实现应用交付的敏捷化,更需要实现IT支持和响应流程的敏捷化、服务化;
随着企业数字化推进,IT运维不仅针对IT基础设施,还针对多业务系统,企业需要开展智能业务运维体系。
厂商能力要求:
能够提供基于AIOps理念的监控运维管理平台,能够采集软硬件基础架构、网络流量、应用性能、业务性能等不同层次的运维数据,通过机器学习的方式来快速洞察人力难以解决的故障问题,预测可能造成故障的风险和隐患,提升IT运维效率,降低运维成本,保证业务的稳定高效运行。
代表厂商:

img

2.1.2.智能营销与用户运营

终端用户:
企业销售部门、营销部门
核心需求:
To C领域:企业用户拉新方面的成本不断提升,企业需要构建用户画像,实现精准营销;在用户转化与留存方面,用户流失现象长期存在,企业亟需提升用户互动的策略性和针对性,提升用户转化率和留存率。
To B领域:企业在线索获取(如招投标信息、市场规模信息等)方面获取信息成本较高,企业亟需降低线索获取成本,为销售决策提供参考。
厂商能力要求:
To C领域:在用户拉新环节,能够对效果广告的用户转化链路进行分析,结合CDP、DMP中的用户数据标签,策划针对性广告内容;在用户转化和运营环节,能够基于数据分析为销售决策提供参考,能够实现自动化营销,具备为企业提供用户运营解决方案的能力,帮助企业增加用户粘性。
To B领域:能够基于NLP、深度学习、知识抽取、数据挖掘等技术,分析特定目标的公开信息(如招投标信息、市场规模信息、竞品的地理位置布局信息等),为企业提供招投标、营销线索和销售决策支持(如潜在客户群体、产品线区域布局优化、营销人员区域配置优化等)。
代表厂商:

img

2.2.金融
2.2.1.银行业金融机构
2.2.1.1.零售业务营销与风控

终端用户:
银行信用卡中心、网络金融部门、个人金融部门、呼叫中心;消费金融机构
核心需求:
传统银行营销方式以大客户营销为导向,对客户分层颗粒度较粗,不能覆盖海量的来自互联网的外部流量,数据洞察具有滞后性。银行需要增强用户群体的数据洞察能力,基于用户真实需求进行产品设计、渠道选择和营销策划,实现精准触达用户;
用户触达方面,传统线下营销依靠人力推动,客户触达数量小、成本高。银行需要批量拓展消费端场景,增强场景获客能力;
客户运营和反馈方面,传统银行对营销执行过程管理和反馈体系缺失,客户转化率低,对客户行为(例如客户流失)变化、交叉销售不能及时跟进。银行需要针对营销结果的闭环反馈,对客户需求变化敏捷反应;
传统银行风控系统对于征信白户或者下沉客群缺乏数据积累,在贷前申请、交易和支付环节难以有效识别欺诈风险,银行需要采用知识图谱、生物识别等多种新技术,进行实时的反欺诈;
传统银行风控系统存在额度定价缺乏个性化定制、信用审批流程长、用信率低等问题。银行需要基于大数据建模将风控环节前置,提升信贷申请阶段的信用评分精准度,提升用信率,并通过将将授信审批流程线上化,减少审批时长,提升客户体验;
面对贷中、贷后可能出现的信用风险,银行需要建立贷中监控模型,对逾期风险进行提前预警,并对逾期客户制定有效、合规的不良资产处置策略,抑制不良率上升;
针对贷后催收人力成本高、话术不合规、对于高价值客群体验感差等问题,银行需要引入智能客服机器人等AI产品,降低催收人工成本,化解合规性难题,并采取差异化催收策略,提升客户体验。
厂商能力要求:
提供标准化数据产品和联合建模服务:如构建用户画像,利用模型智能学习对人群包精准筛选,定位目标客群;对接主流社交媒体平台进行精准广告投放、用户匹配、流失预测等;建立智能标注和智能回访系统,利用智能外呼形式进行营销,并对用户反馈进行记录。
提供标准化数据产品和联合建模服务:基于设备指纹等身份数据和社交类数据,构建用户画像,利用计算机视觉、规则引擎、欺诈关联图谱等技术,结合线性模型逻辑回归算法,在贷前针对不同风险偏好的客群输出信用分和欺诈分、进行贷中监测(客户异常行为预警、客户流失预测)、实现智能化贷后催收;实现授信流程线上化、自动化,减少人为干预,数秒钟内可出件。
提供端到端的营销和风控解决方案:除了提供系统和模型外,厂商还需对客户经理团队培训、风控策略部署等提供运营支持。
代表厂商:

img

2.1.1.2.小微业务营销与风控

终端用户:
银行普惠金融部门
核心需求:
面对小微企业风险能力承受弱和信用信息欠缺的现状,银行需要利用工商、司法、舆情等多维度数据进行贷前客户筛选、贷中预警监控和贷后催收,降低小微信贷业务的不良率、逾期率;
在小微信贷申请、交易支付等环节中,面对层出不穷的欺诈手段,银行需要采用多种新兴技术,实现多维度、实时反欺诈,从而降低欺诈风险,有效保障银行和客户的权益;
厂商能力要求:
提供标准化数据产品、联合建模服务或端到端的营销、风控解决方案,帮助银行实现多维度客户洞察和风控前置,提升信贷审批效率,并进行贷中预警监控,降低贷后资产处置成本,最终降低风险管理成本,提升客户体验;
提供生物识别、用户画像模型、规则引擎、欺诈关联图谱等底层技术;提供端到端的反欺诈解决方案,帮助银行实现小微业务的申请、交易、支付等环节的反欺诈。
代表厂商:

img

2.1.1.3.对公业务营销与风控

终端用户:
银行公司金融部门、授信审批部门、风险管理部门。
核心需求:
国内存在大量由企业连环担保形成的“担保圈”,潜在传导风险大,银行需要增强对“担保圈”企业关联关系的洞察能力,从而及时预知和抵御风险;
对公交易金额巨大,但账户暴力破解、信息窃取、账户盗用等交易欺诈手段日益丰富,银行需要为客户提供增强身份认证手段,以提升其在大金额交易中的额度限制。
厂商能力要求:
提供端到端的对公营销或风控解决方案:帮助银行实现跨行业和企业的关系网络构建,帮助银行提升事件洞察能力,重塑营销与风控过程,从而提升营销效率和精准度,提前预防风险;
能够提供知识图谱、生物识别、用户画像模型、规则引擎、欺诈关联图谱等底层技术,帮助银行实现对公业务的申请、交易、支付等环节的反欺诈。
代表厂商:

img

2.2.1.4.内控合规/稽查

终端用户:
银行内控合规部门、审计稽核部门
核心需求:
银行对行内员工与客户进行资金往来以谋取利益,利用客户资料获取银行信用,勾结行外人员欺诈等违法违规行为缺乏稽核能力,亟需优化内控合规、审计稽核机制;
洗钱等金融犯罪手段呈现出多样化、复杂化、隐蔽化的特征,为此国家不断加大金融监管力度,银行面临的监管和合规压力增加;
传统反洗钱模式主要依靠大量专家经验和规则,需要投入大量的人力和时间成本,效率低下,误报率高,银行亟需采用科技手段提升反洗钱准确性。
厂商能力要求:
基于知识图谱等技术的底层技术能力,融合客户身份信息、员工身份信息、交易和资金链路、风险特征标签等多维度信息,以及股权、投资、任职、亲属等关联关系,对交易行为进行全面洞察,有效判别腐败、毒品、走私、非法集资、行内外非法利益往来等不同特征的大额交易和可疑交易,挖掘可疑风险群体,对高风险群体进行重点排查和处置。
代表厂商:

img

2.2.1.5.财富管理

终端用户:
银行私人银行部门、个人金融部门
核心需求:
银行传统销售方式主要依靠客户经理线下推广,无法覆盖大众理财需求。且普通客户对净值型产品资产配置经验不足,银行需要为大众客户提供更加自动化、智能化的资产配置方案;
在利率下行、同业竞争加剧的背景下,银行在理财产品销售中需要制定面向不同客群的产品设计和推荐策略,实现精准营销;
高净值客户的个性化需求突出,需要理财师提供深度顾问式服务,提升客户转化效率;
随着央行资管新规的落地和“去刚兑”政策逐步落实,银行面临的违约风险加剧,亟需提升对净值型产品的管理和估值能力。
厂商能力要求:
为银行提供智能投顾技术支持,帮助银行实现面向大众的净值型理财产品的自动化、智能化资产配置,从而提升净值型理财产品对大众客户的覆盖度;
提供针对理财客户营销的联合建模或端到端解决方案,从而进行客户分群,帮助银行实现理财产品的精准营销;
提供面向高净值客户的全托管、一站式的财富管理平台,提供从理财产品、营销、销售、签约到投后管理的全套服务,降低理财经理在日常重复性工作中的投入,让理财经理将更多精力放在深度服务客户之中,从而提升高净值客户对银行和理财经理的信任度和留存率;
为银行提供针对净值型产品的估值解决方案,为过渡期产品提供平稳的过渡运行解决方案,促进银行资管业务的全面升级,更好地落实央行资管新规。
代表厂商:

img

2.2.2.保险
2.2.2.1.营销与销售

终端用户:
保险公司精算部门、销售部门
核心需求:
在大健康产业链上,保险公司处于下游,传统上扮演支付方的角色,在健康数据和医疗技术方面处于劣势,风险管理与成本费用控制方面较为别动。保险公司亟需和第三方合作,获得更多的数据优势和技术能力。
首先,在获客方面,保险公司传统获客方式是依靠保险经理人和代理人线下营销,拓客方式成本高、效率低。随着同业竞争加剧,保险公司亟需采取批量获客方式降低获客成本、提升获客效率。
其次,实现批量获客之后,保险公司需基于客户数据,智能分析客户意图,进行产品设计,打造覆盖常见的多发疾病和对症药品的保险产品组合,并将客户需求与产品和服务进行匹配,采用精准定价方式,使低意愿用户逐渐成为高意愿用户。
厂商能力要求:
针对营销场景,厂商需能够提供丰富的客户资源和较强的用户触达能力。此外,厂商需具备建立消费者数据库和通过多维度标签提取用户画像、提供精准营销线索的能力,能够依据数据分析与统计可掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再制定有针对性的营销方案和营销战略,输出自动智能保险服务;
针对产品设计领域,厂商需依托专业的疾病知识库,利用医疗大数据和机器学习等技术处理患者疾病信息,并由医学专业人士完成数据质检,实现数据深度结构化,为保险公司提供决策支持。
代表厂商:

img

2.2.2.2.智能核保、承保与理赔

终端用户:
保险公司理赔部门、精算部门和销售部门
核心需求:
保险公司传统核保、承保和理赔流程强烈依赖高度专业的人员进行审核,人力成本高,不能适应互联网延伸的新业务高并发需求,保险公司需将承保、核保和理赔流程自动化,提升审核效率。
通过批量流量导入的客户质量分层比较明显,容易出现逆向选择等道德风险。保险公司需要将审核流程智能化,对用户进行大量数据分析,判断用户是不是是风险用户,做好客户的风险控制。
厂商能力要求:
提供智能核保、承保自动化、智能保单管理和智能理赔服务,将审核流程自动化、智能化,降低人力成本,提升风险识别效率和效果。
智能核保:利用AI基于大数据分析做定价和风险评估。数据来源可以是结构化数据,也可以是非结构化数据。结构化数据例如,通过审阅医院的病历记录,获取与保单关联的体检报告和以往的评估报告等材料。非结构化数据例如,通过感知和监测驾驶员驾驶行为习惯数据为车险动态定价,以及利用地理图像数据及图像识别技术对房屋和农场品等保险标的进行状态监测和风险评估。进行数据分析之后,对接后台建立好的知识库,自动输出核保结论,帮助核赔人员对大批量保单进行预筛。由此减少人力成本,提高核保准确率。
承保自动化:AI根据搜集到的信息自动执行核保流程。例如对医疗证明、病史等数据分析之后,对接后台建立好的知识库,计算索赔付款,协助保险公司降低成本,提高欺诈先出率。
智能保单管理:通过扫描和文档分析技术,自动处理,大量的客户理赔文件提升处理客户理赔请求的效率,减少人力成本。
智能理赔:利用无监督和有监督的机器学习算法与网络分析相结合,更快速对无关联数据库进行并行计算,提高识别欺诈准确率;基于大数据建模,通过神经网络对海量内部、第三方和社交媒体数据进行分析,自动预测客户索赔的严重性,提升理赔预测准确度;利用AI开展远程理赔勘察。例如车险,AI可以对汽车损坏图像智能识别,在大数据分析基础上对汽车损坏程度进行评估、分类和定损,并分配至相应的工作流,以有效降低成本。
代表厂商:

img

2.3.消费品与零售
2.3.1.品牌商&零售商
2.3.1.1.营销与销售

终端用户:
品牌商、零售商的市场部门、品牌部门
核心需求:
品牌商与零售商面临拉新成本高、客户流失等痛点,企业需要利用AI技术,基于客户画像数据增强对用户的洞察、进行广告投放后链路分析,实现精准营销获客,并增加用户粘性,实现自动化营销;
品牌商与零售商需要基于分析快速掌握细分领域内的市场发展动态,以指导企业调整营销策略。
厂商能力要求:
能够开发智能算法模型,赋能企业在营销全流程中进行客户洞察、客户管理、市场洞察等;
在触达用户阶段,能够依据智能线索提供精准筛选和线索画像,帮企业快速锁定目标客户;
零售行业的标签体系众多、营销体系灵活度高,为提升模型效果,在AI模型策略部署上需要厂商具有行业积累、对用户业务深度理解。
代表厂商:

img

2.3.1.2.渠道管理

终端用户:
品牌商&零售商仓储管理部门、营运管理部门和销售部门等。
核心需求:
渠道管理涉及仓储管理、门店陈列管理和配送管理。
仓储管理:主要涉及企业库存管理、经销商库存管理和仓储自动化。首先,消费者的购买方式、个性化需求日新月异,企业需要提前进行产品模块化企划、设计与开发,为用户提供零库存下即需即供、虚实结合的一站式服务。此外,近年来快消品销售额增速放缓,经销商渠道收入占比高达60-80%,快消品品牌商需要加强对经销商的管理,实现渠道互联网化。尤其是在疫情期间,经销商普遍存在库存积压、商品滞销的情况,快消品品牌商需要赋能经销商运营,加强对经销商订货、销售、库存等数据及时收集和监控;最后,大型企业需要利用机器人替代人工进行仓储自动化,实现物料的存取、储存、运输和控制装置,以及仓库的帐目管理自动化、智能化;
门店陈列管理:门店作为重要流量入口,面临客流下滑困境。企业需要采集消费者线下行为数据,通过分析顾客拿放商品情况、以及竞品门店陈列情况优化商品排面陈列,对经销商铺货进行监控管理,从而提升销量;
配送管理:随着同业竞争加剧,企业需要利用AI技术对配送路线、车辆分配进行优化,缩短配送时间,解决“最后一公里”配送难题,提升用户体验。
厂商能力要求:
仓储管理:为保证尽快到货,厂商需要具备利用AI模型提前分析和预测各地商品需求量的能力,建立智能补货模型,提升效率、降低成本,且消费品与零售行业产品周转率高,不同产品的仓储管理要求不同,为提升模型效果,在AI模型策略部署上厂商需要具备行业积累。此外,为提升经销商管理效率,厂商需提供在线订货商城,支持全渠道覆盖的多种订货渠道,系统对接经销商和其发展的终端商户;并为企业提供提供渠道订单、销量等数据,实现对经销商订货、终端销售的统一管理;为实现仓储自动化,厂商需要具备实现物流作业过程的设备和设施自动化能力,如,建立自动识别系统、自动检测系统、自动分拣系统、自动存取系统、自动跟踪系统等。
门店管理:对于终端渠道的洞察,需要利用计算机视觉技术自动识别产品,对商品陈列进行洞察,提供商品销售数据及竞品对比等数据分析能力,优化终端渠道销售。
配送管理:厂商需利用AI技术建立智能配送路线优化模型,在人流密集区建立配送点解决最后一公里配送难题。
代表厂商:

img

2.4.政府与公共服务
2.4.1.政府&公共服务
2.4.1.1.政务服务

终端用户:
政府办公厅、大数据中心、城市大数据局等。
核心需求:
在政务监管、政务办理、移动政务、城市运营等领域,普遍存在不同政府部门、不同区域、不同业务条线的系统分散独立的情况,导致系统之间形成“信息孤岛”,难以为AI模型开发提供支持。为提升AI应用效果,政府首先应打通各部门、各业务条线数据,建立统一的数据库,如监管平台、政务平台、互联网政务服务总门户和统一的运营管理平台,形成统一的数据标准规范服务AI应用;
现阶段,各级政府部门已形成海量数据资源池,但真正能服务于业务的数据应用却较少。政府需要利用知识图谱技术将各部门数据抽取融合形成知识,搭建政务领域知识中台,为上层各业务部门工作提供知识支持。例如,在政务办理方面,政务办理具有专业性强、流程环节多、处理情形复杂等特点,需要多部门人力的配合、周期长。政府亟需根据具体政务流程和办理特点梳理政务办理规则,通过AI算法赋能形成政务知识库,降低人力成本,提高工作效率。此外,考虑到民众在办理业务时难以精准定位办理窗口,政府需要基于政务知识库建设的业务办理系统介入,提供精准的政策推荐和窗口指引服务,提高政务办理效率和民众体验;
城市运营需要多维数据支撑,以挖掘社会关键要素之间的隐性关系,辅助政府部门决断。政府需要利用知识图谱技术对各社会要素进行关联分析与模型推算,在宏观调控、社会管控、政策实施、灾害防控等多方面为政府决策提供数据支撑。
厂商能力要求:
政务业务系统相对独立,厂商应具备一定的整体规划能力、系统对接能力和大数据治理能力,将各子系统打通,建立统一的功能性平台;
政务监管、政务办理、移动政务、城市运营等领域专业性强,厂商需要具备一定的行业经验,有同类型案例背书,对各领域相应的政策、政务知识、监管规则、政务办理流程等知识有一定了解,能够深入理解各业务场景,帮助政府打造政务知识库以及监管规则库;
政务行业具有海量数据,需要厂商具备大规模知识图谱构建能力:政务行业对于知识检索有一定需求,要求厂商具备一定自然语言处理能力;政务行业对于图谱可视化应用较多,厂商应具备一定图谱可视化的优化能力;此外,由于各区域、各级政府之间存在一定需求差异,构建知识图谱的过程中存在较多定制化需求,厂商需具备较强的服务意识与定制化能力。
代表厂商:

img

2.4.1.2.智慧园区

终端用户:
政府部门、地方运营商等
核心需求:
产业发展与服务升级是智慧园区的核心需求,智慧园区需要利用AI算法模型和数据平台在更大范围内提高园区招商引资以及吸引人才的竞争力,同时提高园区的综合服务能力;
智慧园区需要保障人员和环境的安全。园区人员流动大、出入人员构成复杂以及对温度、湿度、水/电系统的偶然问题和火种丢弃的意外情况敏感度高,导致园区安全管理难度高、效率低。因此,园区需要利用AI赋能的传感器、智能摄像头等设备大规模覆盖园区空间,实时监控环境,进行访客安全管理、停车管理等,保证园区内的人员及环境安全;
传统园区孤立系统多,智能化水平低且大多依赖人力进行管理运营,存在着运营成本高,资产利用率低的现象,需要智慧园区解决方案建设统一平台,优化园区配置、降低人力运营成本、并提升管理效率。
厂商能力要求:
厂商应具备针对智慧园区应用场景开发数据分析算法与模型的能力,能够赋能园区进行产业规划,优化管理、商区服务等;
智慧园区对安防要求较高,厂商需要具备AI算法能力以及硬件设备能力保证人员及环境安全;
各园区数字化建设水平参差不弃,且使用场景需求不同,厂商应具备定制化服务能力、场景理解能力以及服务能力;
智慧园区涉及的功能模块以及业务领域较多,厂商应具备一定整体规划能力和平台对接能力。
代表厂商:

img

2.4.1.3.城市安全

终端用户:
公安局指挥部、刑事部、治安防控部、支持部等部门、政府部门、社会企业等
核心需求:
城市安全主要包括智慧安防、智慧警务和应急管理。
智慧安防:传统视频安防作用于事后追溯阶段,系统联动能力差、不能有效防范危险事件发生。公安局、政府部门需利用人脸识别等AI技术赋能摄像设备:基于人脸识别、视频图像处理、危险动作识别以及AI算法训练平台等功能,及时捕获危险人员信息,做到事前预警,并在危险事件发生时及时联动警示;
智慧警务:违法犯罪活动本身具备隐蔽性、团伙性等特征,在技术高速发展的背景下,又呈现网络化、智能化、复杂化等新特征,增加了公安人员的办案难度。公安局需利用知识图谱搭建公安领域知识库,建立风险预测模型进行重点人员关联分析、异常事件挖掘、重点场所关联分析、物品关联分析、团伙关系分析、相似案件推理等,对暴恐事件提前预警、挖掘潜在嫌疑人,提高办案效率。
应急管理:针对消防安全管理,政府应急管理部门依托物联网设备采集海量多维数据,利用AI技术,对消防安全要素进行多维关联分析,提高判断准确率,辅助决策;针对各类事故灾害预防,应急管理部可利用AI技术关联关键影响因素建立事故灾害预测模型,辅助预测事故灾害发生;在灾后的救援工作中积累的大量救援经验知识难以做到经验互享,应急管理部门可利用AI技术建立应急管理领域知识库,为救援工作提供支持;此外,当灾害事件发生时,应急管理部门利用大数据及AI技术,及时针对热点事件反馈,以稳定民众情绪。
厂商能力要求:
各地公安机关、政府部门具备各自特点,需要较多定制化服务,厂商需要具备AI算法开发平台或AI算法定制服务能力;
安防领域涉及人脸识别的大多数应用场景需要一体化解决方案,要求厂商具备软硬件解决方案提供能力;此外,由于场景特殊性,强调厂商的技术支持能力与售后反应速度,要求厂商具备较强的技术支持团队与问题反馈能力;
在智慧警务领域,在构建知识图谱过程中,需将公安实战经验需要转换为公安知识图谱中的应用模型,需要厂商具备一定行业模型积累;公安领域内对于知识检索有一定需求,要求厂商具备一定自然语言处理能力;
在应急管理领域, 针对舆情分析、事故灾害预测、灾后救援等应用场景需要厂商具备相应算法模型,并可根据各地实际情况进行模型优化;政府对于信息安全的高度重视,厂商应满足相应等保要求。
代表厂商:

img

2.4.1.4.智慧交通

终端用户:
交通运输厅(局、委)、公路局、水运局、运输服务司、公安部(交警支队、车管所等)、交通管理局、机场、航空公司等。
核心需求:
交通监管需要处理海量机动车数据,传统监管模式依赖人工线下对视频或图片审核,审核员之间标准不统一,人工精力有限导致审核效率低。交通部门需利用机器代替人工,形成统一的道路交通安全监管标准,对车检结果进行复核、开罚单,并实现实时违章报送,提升业务效率;
面对城市交通拥堵问题,交通部门需基于前端感知设备采集的数据,基于动态知识图谱等AI技术,形成人、车、道路的大交通关系图谱,通过交通业务模型,实现对路口信号灯的实时调度和道路规划:针对突发情况导致的拥堵,交通部门需要快速响应、进行路径规划,指挥车辆规避风险路段;
天气是影响航班运行和航班安全最重要的因素。民航局、机场和航空公司需要利用AI模型对天气进行预测,分析气象对航班流量的影响程度,将预测结果作为航班流量管控、航线设置、机场资源调配的依据。
厂商能力要求:
针对海量视频和图片信息,厂商需将AI技术应用于数据治理环节,以智能化标注替代人工标注团队;
交通管理场景复杂,要求厂商对行业有深入理解,将AI技术和业务场景深度结合,能够针对不同场景选出最优的数据、算法和训练规则,提升模型开发效率和效果;
在智慧航空领域,厂商需能够通过AI模型对天气现象指标(如云量、能见度等指标)进行精细化识别和预报,并把机场和航空公司的航班流量数据系统和气象观测数据融合,分析气象对航班流量的影响程度,提供决策支持;
在构建智慧交通平台的过程中有较多定制化需求,要求厂商定制化能力较强,具备较好的服务意识。
代表厂商:

img

**2.5.工业与能源
**2.5.1.工业企业&能源企业
2.5.1.1.智能生产

终端用户:
企业生管/资产部门、生产部门。
核心需求:
计划排产:以离散型制造业为主的企业多品种、小批量的离散化生产趋势明显,排产的限制条件越来越复杂;且企业敏捷排产需求(如工业企业临时补货需求、国家电网电力调度)增加,传统人工排产效率低下,缺乏敏捷的资源调度能力,导致执行计划存在偏差,难以及时响应市场需求;
质检与质量管理:传统的人工检查方法在缺陷判别上存在个体与个体间的差异,并且存在检查员视力疲劳等因素,很多产品的微小瑕疵并不能被高效识别,且人口红利消失,企业需利用智能化方式替代人工质检,提升质检效率、解决用工难问题,加强对全流程质检数据的分析和管理能力;
设备监控与维护:工业设备的巡检、监控、维护需要消耗大量人力,传统人工监控方式难以识别隐藏的设备隐患,且设备故障造成的产线停顿会给制造型企业带来巨大损失。因此,企业亟需采用智能化方式代替人工监控和运维,提升巡检精细度,提前预测设备故障,减少产线停顿几率;
安全生产管理:现场作业监管理人员有时会无法到施工现场监督监护,或者仅停留很短时间,难以满足作业许可制度规范的要求;而摄像头仅能监控到主要生产装置及要害部位,难以对任一生产区域的不规范作业时进行监控。企业需要利用AI技术对生产全流程实现实时监控和管理;
厂商能力要求:
计划排产:厂商需能够基于最短交货期算法、最短工序算法、神经网络、模拟退火法、遗传算法、禁忌搜索法等生产计划排程算法,在资源、物料清单、流程、产能等多种限制因素下,实现精确计划排产,将计划排产工作压缩至分钟级,及时响应市场需求变化;
质检与质量管理:厂商实时获取产品外观检测质量数据,结合机器学习、深度学习算法,对良品率异常、缺陷分布异常、缺陷位置异常等信息提供实时预警,以及多维度质量统计分析和质量追溯,以此提升质检的精准度,解决人工效率低、传统机器视觉技术通用性与智能性不足等问题;
设备监控与维护:厂商需能够通过工控网络协议、传感器等方式,采集工业设备的运行状态数据,尤其是出现故障时的设备数据,并结合机器学习、深度学习算法,构建设备故障预测模型、生命周期模型等,从而在故障出现之前或早期阶段,对设备进行预测性维护;
安全生产管理:厂商需能够基于机器视觉、体态识别、异常行为分析预警等AI技术,在安全防范、监管实施、质量检测和生产流程管理方面,实现实时监控、自动发现问题、主动预警;
代表厂商:

img

2.6.医疗与医药
2.6.1.医院
2.6.1.1.AI影响辅助诊断

终端用户:
影像科医生、病理科医生、临床医生。
核心需求:
随着患者CT、超声等诊断量增加,影像科医生处于高负荷作业状态,在一定程度上存在利用技术手段提升诊断效率的诉求;
很多县级医院的影像设备虽基本配置满足,但影像科医生数量和水平不足,诊断能力难以支撑临床诊断需求。
厂商能力要求:
厂商提供的AI影像技术需具备较高的病灶检出率,能够将假阳性控制在合理范围内;且需覆盖多病种,可对某一部位进行全面的辅助诊断,更加贴近临床环境;
具备定位检出、定量分析、定性诊断、智能随访、结构化报告等影像工作全流程解决方案;
厂商系统需具备易用性、交互人性化的特点,无需改变医生原本的工作流程;
厂商提供的影响设备无需对影像设备进行改动,与医院PACS系统连接顺畅,无需复杂设置。
代表厂商:

img

2.6.1.2.CDSS(临床决策支持系统)

终端用户:
临床医生。
核心需求:
国家政策要求二级以上医院必须参加电子病历应用水平分级评价,同时将评级结果纳入三级医院的绩效考核指标中,并规定到2020年,所有三级医院要达到分级评级4级以上,二级医院要达到3级以上;电子病历评级的4级、5级、6级均对临床辅助决策支持提出明确要求,为了满足过级需求,医院需要采购CDSS系统;
除了评级以外,医院在业务方面的需求在于为医生提供临床决策支持,改善临床效率、提高临床质量,同时能够辅助医务管理,对部分病历进行质控;
对于医疗水平较弱的基层医疗机构而言,需求在于提高基层医生的诊断能力,CDSS可以对基层医生起到决策提示和带教的作用。
厂商能力要求:
厂商提供的CDSS产品需要具备通过4-6级的功能,并协助医院完成电子病历评级的工作;
CDSS产品需以权威的医学指南、临床路径、教材、药典等作为知识库的支撑,并基于实时的全量临床数据建模,对医生来说具有实用价值;
CDSS产品需要完全融入医生的临床诊疗流程,并与医嘱执行等紧密结合,同时,CDSS产品的定制化程度较高,需要厂商具备定制化能力,基于每家医院的数据单独建模。
代表厂商:

img

2.7.汽车与出行
2.7.1.汽车主机厂商
2.7.1.1智能驾驶

终端用户:
汽车主机厂商生产部门、研发部门。
核心需求:
自动驾驶系统可分为决策层、感知层、执行层。AI应用主要集中在感知层和决策层;
在感知层,自动驾驶场景不是简单和标准化的,依据不同场景,企业需要基于摄像头、雷达、速度与加速度传感器等传感器进行环境信息和车内信息的采集与处理,利用AI 算法提升对环境的场景理解能力,如针对特别障碍物进行识别优化、识别道路标志及标线、行车车辆的检测等;
此外,在复杂的地市道路行驶,定位精度要求误差不超过10 cm。企业需开发视觉增强的高精度定位技术,通过融合GNSS全球导航卫星、摄像头、IMU惯性导航和轮速传感器等多个汽车部件的信息,构建出环境地图并在地图中进行自我定位;
在决策层,由于人类驾驶过程中面临的路况与场景多样化,且不同人对不同情况所做出的驾驶策略也有所不同,为实现自动驾驶决策,企业需要基于模糊推理、强化学习、神经网络和贝叶斯网络等AI 技术确定适当的工作模型,替代人类做出驾驶决策,预测本车与其他车辆、车道、行人等在未来一段时间内的状态。
厂商能力要求:
能够提供环境感知、精准定位等自动驾驶技术,以及高精度地图、V2X、自动驾驶汽车测试等关键技术。领先的厂商在感知层能够提供“强感知+强智能”技术路线;
提供常见的决策规划体系结构,如分层递进式、反应式、以及二者混合式;
能够将各传感器之间的相互校准和数据融合输出,提供覆盖感知和决策全流程的软硬件解决方案。
代表厂商:

img

2.7.1.2.智能车载系统

终端用户:
汽车主机厂商生产部门、研发部门。
核心需求:
随着同业竞争加剧,车载智能系统的性能优劣成为了消费者做购买决定时的加分项,甚至是核心选择条件之一。汽车厂商需要优化车载系统,提升产品的竞争力。
总体而言,企业对于智能车载系统优化的需求主要体现在三个方面:
一是视觉体验优化,即对图标、界面排版等进行美化,使得用户能够直观快速找到想要的功能,减少用户学习成本,提升用户体验;
二是多元视听内容,增加系统支持的APP数量,如导航、视频、听歌、听电台导航备美食智能推荐、餐馆订位等功能。
三是语音交互优化,即提升语音激活的响应速度、准确率,增加免唤醒功能等,提升用户体验。
厂商能力要求:
提供简洁易用的智能车载操作系统,对系统界面进行美化;
引入人脸识别、AR技术(增强现实技术)等,支持OTA在线升级,便于功能拓展;
具备较强的语音识别和多轮对话交互能力,做到语音交互前可预判、交互中有反馈、交互后有结果。不仅能基于用户需求找到最匹配的结果,而且能够根据时间、地点、历史记录和用户情绪捕捉,构用户画像,为用户提供推荐备选方案,具备主动推荐能力;在对话过程中,能够做到用户无需唤醒词语可打断对话、提出新需求。
代表厂商:

img

3.人工智能代表厂商

img

4.人工智能厂商解读

由于篇幅有限,下载完整版PDF报告,请到爱分析官方网站。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值