PAT乙级测试题1019(C语言实现)

探讨了数学上的奇特现象——数字黑洞6174,即Kaprekar常数。通过一系列步骤,从任意四位数出发,最终都将陷入6174的循环中。本文详细解析了这一过程,并提供了实现这一数学现象的C语言代码。

1019 数字黑洞 (20分)

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:

输入给出一个 (0,10​4​​) 区间内的正整数 N。
输出格式:

如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:

6767

输出样例 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:

2222

输出样例 2:

2222 - 2222 = 0000
在这里插入图片描述

/*
 * 思路:将数字的每位数存入数组中,进行循环
 * 循环时,先将数组升序排列,求出max,min,进行运算,符合条件则跳出循环
 */
#include <stdio.h>

int main(){
    int n,N[4],max,min;
    scanf("%d", &n);
    N[3] = n % 10;//储存在数组中
    N[2] = (n - N[3]) / 10 % 10;
    N[1] = n / 100 % 10;
    N[0] = n / 1000;
    while (1) {
        for (int i = 0; i < 4; ++i) {//排序
            for (int j = 0; j < i; ++j) {
                if (N[j] > N[i]) {
                    int h;
                    h = N[j];
                    N[j] = N[i];
                    N[i] = h;
                }
            }
        }//求max,min
        max = N[3] * 1000 + N[2] * 100 + N[1] * 10 + N[0];
        min = N[0] * 1000 + N[1] * 100 + N[2] * 10 + N[3];
        if (max == min) {//比较、判断,符合条件跳出循环
            printf("%04d - %04d = 0000", min, max);
            break;
        } else {
            printf("%04d - %04d = %04d", max, min, max - min);
            if (max-min!=6174) printf("\n");
            else break;
        }//将所得到的数放入数组中
        N[3] = (max - min) % 10;
        N[2] = (max - min - N[3]) / 10 % 10;
        N[1] = (max - min) / 100 % 10;
        N[0] = (max - min) / 1000;
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值